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The fundamental operations of arrays:
map, zip, fold, traverse, transpose,

replicate



Motivation — going up
I APL is a programming language centred on

multidimensional arrays
I It provides lots of seamless adhoc li�ing to multiple

dimensions, i.e.

3square = 9

2 3 4square = 4 9 16

5 6
7 8

square = 25 36
49 64

5 6
7 81 2

3 4

square = 25 36
49 641 4

9 16



Motivation — going up
I Similarly for binary operations

3+2 = 5

2 3 4+1 0 1 = 3 3 5

5 6
7 8

+1 2
3 4

= 6 8
10 12

I Replicates to satisfy shape constraints — alignment

2 3 4+1 = 1 1 1 + 2 3 4 = 3 4 5

1 2
3 4

+2 3 = 2 3
2 3

+ 1 2
3 4

= 3 5
5 7

1 2
3 4

+2 3 4 = Runtime error — unalignable!



Motivation — going up

I A dimensional ordering must be imposed to represent
such structures in memory — e.g. row-major order

I How can we formalise this and make it type safe?



Static sized vectors

I Using DataKinds, we define a type
KnownNat n => Vector n a to be a vector of n
elements, each of which are of type a

newtype Vector (n :: Nat) a = Vector
(Data.Vector.Vector a)

let xs = [3, 4] :: Vector 2 Int -- OverloadedLists

3 4'

I Allows the typechecker to catch pre-alignment
size-mismatch

zipWith :: (a -> b -> c)
-> Vector n a -> Vector n b -> Vector n c



Post-align size-mismatch

I Each Vector n gives rise to an Applicative functor,
with pure given by replication

instance KnownNat n => Applicative (Vector n) where
pure = Vector . Data.Vector.replicate s

-- black magic Haskell type-to-term cast
where s = fromIntegral $

natVal' (proxy# :: Proxy# n) :: Int

pure xs :: Vector 2 (Vector 2 Int)

3 4
3 4

'

Alignment is given by applicative functors



Motivation — coming down

I APL also provides operations to reduce along dimensions
— reductions and scans, which perform sequencing

2 4 6sum = 12 sums 2 4 6 = 2 6 12

2 4 6
8 10 12

sum = 12
30

sums 2 4 6
8 10 12

= 2 6 12
8 18 30

⇒



Formalising reductions and scans
I Reductions are perfectly captured by Foldable

class Foldable t where
foldr :: (a -> b -> b) -> b -> t a -> b

sum :: (Num a, Foldable t) => t a -> a
sum = foldr (+) 0

I Scans are perfectly captured by Traversable (which is a
Foldable)

class (Functor t, Foldable t) => Traversable t where
traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

Sequencing is given by traversables



Motivation — back around

I Which dimension do we want to sum along?

2 4 6
8 10 12

sum ?=
12
30

10 14 18
?=



Motivation — back around

I Refer to the dimensional order imposed and always reduce
along the innermost

2 4 6
8 10 12

sum = 12
30

=2 4 6
8 10 12

sum
2 8
4 10
6 12

=
10
14
18

sum · transpose

= transpose 10 14 18

I Transposition is key



Formalising transposition

I For the most general definition, note that there is a type
with precisely the same number of inhabitants as the
indices of a Vector n — the finitely bounded naturals
[0, n), Fin n

I Thus every Vector n a is isomorphic to function
Fin n -> a



Enter Naperian

I A Naperian functor generalises this notion to any
statically sized data structure

class Applicative f => Naperian f where
type Log f -- using TypeFamilies
lookup :: f a -> (Log f -> a)
tabulate :: (Log f -> a) -> f a
positions :: f (Log f)
tabulate h = fmap h positions
positions = tabulate id

such that lookup and tabulate are each other’s inverse.

I For Naperian (Vector n), Log f = Fin n



Naperian transpose

transpose :: (Naperian f, Naperian g)
=> f (g a) -> g (f a)

transpose = tabulate . fmap tabulate . flip
. fmap lookup . lookup

. . . the fmaps are function composition

Selection is really transposition, and is given by
Naperian functors



Pointwise combinations

I It’s just a zip!

nzipWith :: Naperian f => (a -> b -> c)
-> f a -> f b -> f c

nzipWith f xs ys = tabulate (\i -> f
(lookup xs i)
(lookup ys i)

)

I Can also get here from <*>. . .

Combination is zipping, and is also given by
Naperian functors



Multidimensionality with rank
polymorphism



Hypercuboids

I Need a single type containing scalars, vectors, matrices,
etc. to define rank-polymorphic operators on

data Hyper :: [Type -> Type] -> Type -> Type where
Scalar :: a -> Hyper '[] a
Prism :: (Dimension f, Shapely fs)

=> Hyper fs (f a) -> Hyper (f ': fs) a

I Contains rank and extent along each dimension at the
type level



Accelerate types

I Accelerate is a Haskell DSL for GPU programming,
centred around its Array type

fromList :: (Shape sh, Elt a)
=> sh -> [a] -> Array sh a

-- some shapes
Z :: Z
(Z :. 2) :: Z :. Int
(Z :. 2 :. 3) :: Z :. Int :. Int

I Shape corresponds to the type-level list of dimensions of
Hyper. . .



Rose�a Stone
I Concrete example:

1 2 3
4 5 6

m :: Vector 2 (Vector 3 Int)
m = [ [ 1, 2, 3 ],

[ 4, 5, 6 ] ]

h :: Hyper '[Vector 3, Vector 2] Int
h = Prism . Prism $ Scalar m

a :: Array (Z :. Int :. Int) Int
a = fromList (Z :. 2 :. 3) [1 .. 6]

I . . . but this correspondence is not perfect — Shape lacks
information!



Introducing Flat

data Hyper :: [Type -> Type] -> Type -> Type where
Scalar :: a -> Hyper '[] a
Prism :: (Dimension f, Shapely fs)

=> Hyper fs (f a) -> Hyper (f ': fs) a

type family ToShape (f :: [Type -> Type]) where
ToShape '[] = Z
ToShape (x ': xs) = ToShape xs :. Int

data Flat fs a where
Flat :: (Shape (ToShape fs))

=> Array (ToShape fs) a -> Flat fs a



Hyper-Array-Flat correspondence

Hyper fs a Array (ToShape fs) a Flat fs a

ToShape fs -> [a]

toArray

flatten

λx.(toShape x)(elements x)

Flat

λ
x
.(arrayShape

x)(toList
x)

getArray

unflatten

hyperise fr
om

Li
st



Summary

I Modern Haskell facilitates APL features with type safety
I Accelerate provides an interface to the GPU with

reasonably nice types
I Plenty of room for improvement

I Empirical benchmarking required
I Deal with the boxing — MonoFunctors?
I Translation between Hyper operators and Accelerate

operators



�estions?
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