Accelerating Naperian Functors

Nick Hu
nick.hu@cs.ox.ac.uk

September 22, 2017

The fundamental operations of arrays: map, zip, fold, traverse, transpose, replicate

Motivation - going up

- APL is a programming language centred on multidimensional arrays
- It provides lots of seamless adhoc lifting to multiple dimensions, i.e.

Motivation - going up

- Similarly for binary operations

$$
\begin{gathered}
\begin{array}{c}
2 \\
+ \\
\hline
\end{array}+\begin{array}{|c|}
\hline 3 \\
\Downarrow
\end{array} \\
\begin{array}{|l|l|l|}
\hline 1 & 0 & 1 \\
\hline
\end{array} \\
\begin{array}{|l|l|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}+\begin{array}{|l|l|l|l|}
\hline 5 & 3 & 4 \\
\hline 7 & 8 \\
\hline
\end{array}=\begin{array}{|l|l|l|}
\hline 6 & 8 \\
\hline 10 & 12 \\
\hline
\end{array}
\end{gathered}
$$

- Replicates to satisfy shape constraints - alignment

$$
\begin{aligned}
& \begin{array}{|l|l|}
\hline 2 & 3 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline 2 & 3 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}=\begin{array}{|l|l|}
\hline 3 & 5 \\
\hline 5 & 7 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|}
\hline 2 & 3 & 4 \\
\hline
\end{array}+\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline 3 & 4 \\
\hline
\end{array}=\text { Runtime error }- \text { unalignable! }
\end{aligned}
$$

Motivation - going up

- A dimensional ordering must be imposed to represent such structures in memory - e.g. row-major order
- How can we formalise this and make it type safe?

Static sized vectors

- Using DataKinds, we define a type KnownNat $\mathrm{n}=>$ Vector n a to be a vector of n elements, each of which are of type a

```
newtype Vector (n :: Nat) a = Vector
    (Data.Vector.Vector a)
let xs = [3, 4] :: Vector 2 Int -- OverloadedLists
                ~
                                    3 4
```

- Allows the typechecker to catch pre-alignment size-mismatch

```
zipWith : : (a -> b -> c)
    -> Vector n a -> Vector n b -> Vector n c
```


Post-align size-mismatch

- Each Vector n gives rise to an Applicative functor, with pure given by replication
instance KnownNat n => Applicative (Vector n) where pure = Vector . Data.Vector.replicate s
-- black magic Haskell type-to-term cast where $s=$ fromIntegral \$
natVal' (proxy\# : : Proxy\# n) :: Int
pure xs : : Vector 2 (Vector 2 Int)

$$
\simeq \quad \begin{array}{|l|l|}
\hline 3 & 4 \\
\hline 3 & 4 \\
\hline
\end{array}
$$

Alignment is given by applicative functors

Motivation - coming down

- APL also provides operations to reduce along dimensions - reductions and scans, which perform sequencing

$$
\begin{aligned}
& \text { sum } \begin{array}{|l|l|l|l|l|l|l|}
\hline 2 & 4 & 6 \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline 12 \\
\hline
\end{array} \quad \text { sums } \begin{array}{|l|l|l|l|l|}
\hline 2 & 4 & 6 \\
\hline 2 & 6 & 12 \\
\hline
\end{array} \\
& \Downarrow \\
& \operatorname{sum} \begin{array}{|c|c|c|}
\hline 2 & 4 & 6 \\
\hline 8 & 10 & 12 \\
\hline
\end{array}=\begin{array}{|l|l|l|l|}
\hline 12 \\
\hline 30 \\
\hline
\end{array} \quad \text { sums } \begin{array}{|c|c|c|c|}
\hline 2 & 4 & 6 \\
\hline 8 & 10 & 12 \\
\hline
\end{array}=\begin{array}{|c|c|c|}
\hline 2 & 6 & 12 \\
\hline 8 & 18 & 30 \\
\hline
\end{array}
\end{aligned}
$$

Formalising reductions and scans

- Reductions are perfectly captured by Foldable
class Foldable t where
foldr : : (a -> b -> b) -> b -> t a -> b
sum :: (Num a, Foldable t) => t a -> a
sum $=$ foldr (+) 0
- Scans are perfectly captured by Traversable (which is a Foldable)
class (Functor t, Foldable t) => Traversable t where traverse : : Applicative f

$$
\Rightarrow(\mathrm{a}->\mathrm{f} b)->\mathrm{t} a->\mathrm{f}(\mathrm{t} b)
$$

Sequencing is given by traversables

Motivation - back around

- Which dimension do we want to sum along?

$$
\begin{gathered}
\operatorname{sum} \begin{array}{|c|c|c|}
\hline 2 & 4 & 6 \\
\hline 8 & 10 & 12 \\
\hline
\end{array} \stackrel{?}{=} \begin{array}{|c|}
\hline 12 \\
\hline 30 \\
\hline
\end{array} \\
\begin{array}{|c|c|c|}
\hline 10 & 14 & 18 \\
\hline
\end{array}
\end{gathered}
$$

Motivation - back around

- Refer to the dimensional order imposed and always reduce along the innermost

- Transposition is key

Formalising transposition

- For the most general definition, note that there is a type with precisely the same number of inhabitants as the indices of a Vector n - the finitely bounded naturals $[0, n)$, Fin n
- Thus every Vector n a is isomorphic to function Fin n -> a

Enter Naperian

- A Naperian functor generalises this notion to any statically sized data structure

```
class Applicative f => Naperian f where
    type Log f -- using TypeFamilies
    lookup :: f a -> (Log f -> a)
    tabulate :: (Log f -> a) -> f a
    positions :: f (Log f)
    tabulate h = fmap h positions
    positions = tabulate id
```

such that lookup and tabulate are each other's inverse.

- For Naperian (Vector n), Log $f=$ Fin n

Naperian transpose

$$
\begin{aligned}
\text { transpose } & ::(\text { Naperian } f, \text { Naperian } g) \\
& \Rightarrow f(g \text { a) }->g(f \text { a) } \\
\text { transpose } & =\text { tabulate . fmap tabulate . flip } \\
& . \text { fmap lookup . lookup }
\end{aligned}
$$

... the fmaps are function composition
Selection is really transposition, and is given by Naperian functors

Pointwise combinations

- It's just a zip!

- Can also get here from $\langle *\rangle .$.

Combination is zipping, and is also given by Naperian functors

Multidimensionality with rank polymorphism

Hypercuboids

- Need a single type containing scalars, vectors, matrices, etc. to define rank-polymorphic operators on

```
data Hyper :: [Type -> Type] -> Type -> Type where
    Scalar :: a -> Hyper '[] a
    Prism :: (Dimension f, Shapely fs)
    => Hyper fs (f a) -> Hyper (f ': fs) a
```

- Contains rank and extent along each dimension at the type level

Accelerate types

- Accelerate is a Haskell DSL for GPU programming, centred around its Array type

```
fromList :: (Shape sh, Elt a)
    => sh -> [a] -> Array sh a
-- some shapes
Z :: Z
(Z :. 2) :: Z :. Int
(Z :. 2 :. 3) :: Z :. Int :. Int
```

- Shape corresponds to the type-level list of dimensions of Hyper...

Rosetta Stone

- Concrete example:

1	2	3
4	5	6

```
m :: Vector 2 (Vector 3 Int)
m = [ [ 1, 2, 3 ],
    [4, 5, 6 ] ]
h :: Hyper '[Vector 3, Vector 2] Int
h = Prism . Prism $ Scalar m
a :: Array (Z :. Int :. Int) Int
a = fromList (Z :. 2 :. 3) [1 .. 6]
```

- ...but this correspondence is not perfect - Shape lacks information!

Introducing Flat

data Hyper :: [Type -> Type] -> Type -> Type where
Scalar :: a -> Hyper '[] a
Prism :: (Dimension f, Shapely fs)
=> Hyper fs (f a) -> Hyper (f ': fs) a
type family ToShape (f : : [Type -> Type]) where
ToShape ' [] = Z
ToShape (x ': xs) = ToShape xs :. Int
data Flat fs a where
Flat : : (Shape (ToShape fs))
=> Array (ToShape fs) a -> Flat fs a

Hyper-Array-Flat correspondence

flatten

Summary

- Modern Haskell facilitates APL features with type safety
- Accelerate provides an interface to the GPU with reasonably nice types
- Plenty of room for improvement
- Empirical benchmarking required
- Deal with the boxing - MonoFunctors?
- Translation between Hyper operators and Accelerate operators

Questions?

