
Accelerating Naperian functors
EPSRC Summer Internship Report

Nick Hu
University of Oxford
nick.hu@cs.ox.ac.uk

ABSTRACT
Naperian functors (Gibbons 2017) provide a dimensionally-
polymorphic abstract representation of structured multidi-
mensional data, e.g. matrices in n-dimensions. Such struc-
tures are frequently utilised in data-intensive computing,
which is common in all experimental sciences. Such structures
themselves are sufficiently abstract such that they do not pre-
clude parallel, high-performance instances. This work explores
integrating the genericity of programming with Naperian
functors with the existing Haskell Accelerate (Chakravarty
et al. 2011) library, an embedded array language capable
of generating heavily optimised parallel machine code and
CUDA code via LLVM (McDonell et al. 2015).

1 INTRODUCTION
A Naperian functor is one which holds shape
class Functor f => Naperian f where

type Log f
lookup :: f a -> (Log f -> a)
tabulate :: (Log f -> a) -> f a
positions :: f (Log f)
tabulate h = fmap h positions
positions = tabulate id
such that tabulate . lookup = id = lookup . tabulate,

taking liberties for the polymorphic type of id.
From this interface, we can define transposition in a very

general way (Figure 1), and indeed this typechecks. Informally,
it produces a function to index the outer and then the inner
dimension, flips the first two arguments, and then tabulates
from inside out. This produces a structure with its dimensions
swapped, and completely captures transposition.

Note that due to fmap laws and the above identity,
tabulate . fmap tabulate . fmap lookup . lookup = id.

This work concerns the application of this abstraction
to data structures from the GPU domain-specific language
Accelerate (Chakravarty et al. 2011).

2 HYPERCUBOIDS AND
ACCELERATE ARRAYS

Gibbons (2017) defines a polymorphic nested datatype pro-
viding the structure necessary to represent arbitrary rank
hypercuboids (tensors):
data Hyper :: [Type -> Type] -> Type -> Type where

Scalar :: a -> Hyper '[] a
Prism :: Hyper fs (f a) -> Hyper (f ': fs) a
A Hyper at the type level contains a list of type con-

structors, which give the dimensions of a hypercuboid, from

innermost dimension to outermost, and also a base type for
the contents. For example, the Hyper representation of the
two-dimensional Int matrix
m :: Vector 2 (Vector 3 Int)
m = [[1, 2, 3],

[4, 5, 6]]
is

h :: Hyper '[Vector 3, Vector 2] Int
h = Prism . Prism $ Scalar m

Functions are provided to generically lift and align opera-
tions for hypercuboids of different but reconcilable shapes in
an APL-like manner.

Hyper is not hugely dissimilar to the Accelerate Array,
which has a representation for the same matrix as1:
a :: Array (Z :. Int :. Int) Int
a = A.fromList (Z :. 2 :. 3) [1, 2, 3, 4, 5, 6]

An Accelerate Array is essentially a flat list of elements,
and a description of its shape (aptly contained within type-
class called Shape). However, the fundamental difference is
that at the type level, Array only represents rank and not
extent — the type signature of a allows us to infer that it
is some two-dimensional matrix, but we require the type
signature of h to discern that it is a 3 × 2 matrix.

We would like to create some kind of correspondence be-
tween Hyper and Array, and to this aim we introduce the
Flat constructor which essentially wraps an Array, storing
the type information required for its equivalent Hyper form.

A Hyper can be converted to an Array via A.fromList,
given a Shape and its contents, which can be extracted as
follows:
elements :: Hyper fs a -> [a]
elements (Scalar x) = [x]
elements (Prism x) = concatMap F.toList $ elements x

For the construction of the Shape, observe that the types
in an Array’s Shape describe the index along dimension, for
which we assert that only Int is effective as a target for GPUs.
Thus, every Hyper dimension list can be safely mapped to a
snoc-list of Z and Int.

At the type level, by use of a closed type family2:
type family ToShape (f :: [Type -> Type]) where

ToShape '[] = Z
ToShape (x ': xs) = ToShape xs :. Int

1We will refer to the Accelerate version of fromList as A.fromList, and
the OverloadedLists version as fromList throughout. Similarly, toList
refers to the version from OverloadedLists, while F.toList refers to
the version from Data.Foldable.
2Conveniently, we also assert that every dimension of the hypercuboid
has strictly positive extent.

Nick Hu

transpose :: (Naperian f, Naperian g) => f (g a) -> g (f a)
transpose = tabulate . fmap tabulate . flip . fmap lookup . lookup
-- with following specialisations
fmap lookup :: (Log f -> g a) -> Log f -> Log g -> a -- (->) e Functor
fmap tabulate :: (Log g -> Log f -> a) -> Log g -> f a -- (->) e Functor
lookup :: f (g a) -> (Log f -> g a)
fmap lookup . lookup :: f (g a) -> (Log f -> Log g -> a)
flip . fmap lookup . lookup :: f (g a) -> (Log g -> Log f -> a)
fmap tabulate . flip . fmap lookup . lookup :: f (g a) -> (Log g -> f a)
tabulate . fmap tabulate . flip . fmap lookup . lookup :: f (g a) -> g (f a)

Figure 1: Naperian transposition

and at the term level:
toShape :: Hyper fs a -> ToShape fs
toShape (Scalar _) = Z
toShape h@(Prism x) = toShape x :. topDimension h

topDimension :: Hyper fs a -> Int
topDimension (Prism x) = F.length . head $ elements x

Flat can now be defined as follows:
data Flat fs a where

Flat :: (Shape (ToShape fs))
=> Array (ToShape fs) a -> Flat fs a

The closed type family is a Haskell idiom for a total func-
tion on types: given a type-level list of kind Type -> Type
(i.e. single-argument type constructors), ToShape computes
the corresponding Shape.

Combining the above, any Hyper fs a can be transformed
into an Array (ToShape fs) a (provided that a is an Accel-
erate element type Elt):
toArray :: (Shape (ToShape fs), Elt a)

=> Hyper fs a -> Array (ToShape fs) a
toArray h = A.fromList (toShape h) (elements h)

The composition gives:
flatten :: (Shape (ToShape fs), Elt a)

=> Hyper fs a -> Flat fs a
flatten = Flat . toArray

ToShape is non-injective, but this composite allows all of
the information of fs to be preserved.

3 GOING BACK WITH OVERLOADED
LISTS

GHC’s OverloadedLists mechanism, which given an in-
stance IsList l, provides the following:

[Item a] l
fromList

toList

Given a functor f with the type bounds IsList (f a) and
Item (f a) ~ a:

[a] f a
fromList

toList

Every Dimension (an instance of Naperian, Applicative,
and Traversable) gives rise to an instance of IsList.

Hence OverloadedLists can be leveraged to provide a
way to turn an Array back into a specific Hyper, by first
building the Array’s element list into a nested list with struc-
ture matching that of the desired Hyper and then mapping
fromList along the innermost nesting outwards:
class Hyperise fs a where

hyperise :: ToShape fs -> [a] -> Hyper fs a

instance Hyperise '[] a where
hyperise Z [x] = Scalar x

instance (Dimension f
, Hyperise fs (f a)
, Item (f a) ~ a
, IsList (f a)
) =>
Hyperise (f ': fs) a where

hyperise (ss :. s) xs =
Prism . hyperise ss $ map fromList (chunksOf s xs)

3

Now, we just need a method of extracting the Shape and
elements of an Array, which is conveniently provided by
arrayShape and A.toList respectively. This allows for the
complete definition of unflatten:
getArray :: Flat fs a -> Array (ToShape fs) a
getArray (Flat xs) = xs

unflatten :: (Hyperise fs a, Shape (ToShape fs))
=> Flat fs a -> Hyper fs a

unflatten f = hyperise (arrayShape arr) (A.toList arr)
where

arr = getArray f

4 HYPER-FLAT EMBEDDING
We define the Flats created via flatten as the well-formed
Flats, and go on to prove that there is a correspondence
between Hyper and the well-formed Flats. See Figure 2 for
a commutative diagram describing the relationships between
the different types.
3chunksOf :: Int -> [a] -> [[a]] is provided by Data.List.Split,
and given an integer n and a list xs, produces a list of n-length segments
of xs in order. Later on, we go to show that it serves as a kind of
inverse for concat in this context.

Accelerating Naperian functors

Hyper fs a Array (ToShape fs) a Flat fs a

ToShape fs -> [a]

toArray

flatten

λx. toShape
x

elements
x

Flat

λ
x

.
arrayShape

x
toList

x

getArray

unflatten

hyperise fr
om

Li
st

Figure 2: Embedding of Hyper into Flat

Lemma 4.1. Given nonempty xs :: Foldable t => [t a]
such that each x in xs has identical length:
xs = map fromList (chunksOf (F.length (head xs))

(concatMap F.toList xs)

Proof. By structural induction over xs.
Case [x]:

concatMap F.toList [x]
= -- concatMap
concat (map F.toList [x])
= -- map.2
concat [(F.toList x)]
= -- concat.2
F.toList x

map fromList (chunksOf (F.length (head [x]))
(concatMap F.toList [x])

= -- head, equation above
map fromList (chunksOf (F.length x) (F.toList x))
= -- chunksOf (input list size is equal to chunking size)
map fromList [F.toList x]
= -- map
[fromList (F.toList x)]
= -- lemma: fromList . F.toList = id
[x]

Case (x:xs) with xs nonempty:
concatMap F.toList (x:xs)
= -- concatMap
concat (map F.toList (x:xs))
= -- map.2
concat (F.toList x : map F.toList xs)
= -- concat.2
F.toList x ++ concatMap F.toList xs

map fromList (chunksOf (F.length (head (x:xs)))
(concatMap F.toList (x:xs))

= -- head, equation above
map fromList

(chunksOf (F.length x)
(F.toList x ++ concatMap F.toList xs))

= -- chunksOf (first chunk is x)
map fromList

(F.toList x : (chunksOf (F.length x)
(concatMap F.toList xs)))

= -- map.2
fromList (F.toList x)

: map fromList (chunksOf (F.length x)
(concatMap F.toList xs))

= -- property 1 =⇒ F.length x = F.length (head xs)
fromList (F.toList x)

: map fromList (chunksOf (F.length (head xs))
(concatMap F.toList xs))

= -- inductive hypothesis
fromList (F.toList x) : xs
= -- lemma: fromList . F.toList = id
x : xs

�

Theorem 4.2. There is an isomorphism between
Hyper fs a and the well-formed Flat fs a.

Proof. For the direction Hyper fs a -> Flat fs a, the
proof is given by structural induction over Hyper.

Base case Scalar x:
(unflatten . flatten) (Scalar x)
= -- composition
unflatten (flatten (Scalar x))
= -- flatten
unflatten (Flat (toArray (Scalar x))
= -- toArray
unflatten (Flat (A.fromList (toShape (Scalar x))

(elements (Scalar x))))
= -- toShape.1, elements
unflatten (Flat (A.fromList Z [x]))
= -- unflatten
hyperise (arrayShape (getArray (Flat (A.fromList Z [x]))))

(A.toList (getArray (Flat (A.fromList Z [x]))))
= -- lemma: getArray . Flat = id
hyperise (arrayShape (A.fromList Z [x]))

(A.toList (A.fromList Z [x]))
= -- lemmas: arrayShape (A.fromList sh _) = sh,

Nick Hu

-- A.toList (A.fromList _ xs) = xs
hyperise Z [x]
= -- hyperise
Scalar x
= -- id
id (Scalar x)

For the inductive case, it is useful to transform the induc-
tive hypothesis into a more useful form; suppose it holds for
x, then:
x
= -- inductive hypothesis
(unflatten . flatten) x
= -- composition
unflatten (flatten x)
= -- flatten
unflatten (Flat (toArray x))
= -- toArray
unflatten (Flat (A.fromList (toShape x) (elements x)))
= -- unflatten
hyperise (arrayShape (getArray (Flat

(A.fromList (toShape x) (elements x)))))
(A.toList (getArray (Flat

(A.fromList (toShape x) (elements x)))))
= -- lemma: getArray . Flat = id
hyperise (arrayShape (A.fromList (toShape x) (elements x)))

(A.toList (A.fromList (toShape x) (elements x)))
= -- lemmas: arrayShape (A.fromList sh _) = sh,

-- A.toList (A.fromList _ xs) = xs
hyperise (toShape x) (elements x)

Inductive case Prism x:
(unflatten . flatten) (Prism x)
= -- composition
unflatten (flatten (Prism x))
= -- flatten
unflatten (Flat (toArray (Prism x)))
= -- toArray
unflatten (Flat (A.fromList

(toShape (Prism x)) (elements (Prism x))))
= -- toShape.2
unflatten (Flat (A.fromList

(toShape x :. topDimension (Prism x))
(elements (Prism x))))

= -- unflatten
hyperise (arrayShape (getArray (Flat

(A.fromList (toShape x :. topDimension (Prism x))
(elements (Prism x))))))

(A.toList (getArray (Flat
(A.fromList (toShape x :. topDimension (Prism x))

(elements (Prism x))))))
= -- lemma: getArray . Flat = id
hyperise (arrayShape

(A.fromList (toShape x :. topDimension (Prism x))
(elements (Prism x))))

(A.toList
(A.fromList (toShape x :. topDimension (Prism x))

(elements (Prism x))))
= -- lemmas: arrayShape (A.fromList sh _) = sh,

-- A.toList (A.fromList _ xs) = xs
hyperise (toShape x :. topDimension (Prism x))

(elements (Prism x))
= -- hyperise

Prism (hyperise (toShape x)
(map fromList (chunksOf

(topDimension (Prism x))
(elements (Prism x)))))

= -- lemma chunksOf and concatMap
Prism (hyperise (toShape x) (elements x))
= -- inductive hypothesis
Prism x
= -- id
id (Prism x)

map fromList (chunksOf (topDimension (Prism x))
(elements (Prism x)))

= -- topDimension, elements
map fromList (chunksOf (F.length (head (elements x)))

(concatMap F.toList (elements x)))
= -- lemma below
elements x

As the only way to create well-formed inhabitants of
Flat fs a is via the flatten function, the reverse direction
is trivial:
(flatten . unflatten) (flatten h)
= -- composition
(flatten . unflatten . flatten) h
= -- forward direction
(flatten . id) h
= -- id
id (flatten h)

�

This suffices to show that there is an adequate embedding
of all Hyper terms into Flat.

For a Flat which is not well-formed, consider the construc-
tion
λ: let a = A.fromList (Z :. 6 :. 4) [1..]

:: Array (Z :. Int :. Int) Int
λ: a
Matrix (Z :. 6 :. 4)

[1, 2, 3, 4,
5, 6, 7, 8,
9,10,11,12,

13,14,15,16,
17,18,19,20,
21,22,23,24]

λ: let f = Flat a :: Flat '[Vector 3, Vector 8] Int
λ: unflatten f
*** Exception: list cast to vector of wrong length

The problem arises due to Accelerate’s Array type only
carrying dimensionality but not extent at the type level.
There is an inconsistency between the shape of the data in the
Flat type and the shape of the Array term a, making the Flat
term f not well-formed. The flatten function carries over
the shape of a Hyper, automatically fulfilling this consistency
criteria.

4.1 Embed
As Accelerate is more like a domain specific language which
compiles to some backend, rather than a library running in

Accelerating Naperian functors

the Haskell runtime, Accelerate itself is not able to operate
on Flats themselves in a useful way: while they carry the
information of an Accelerate Array, Accelerate must first ‘lift’
its inputs into the domain of embedded expressions before it
can begin processing: into either the Acc or Exp constructor,
corresponding to lifted array and scalar types respectively.
Accelerate provides the functions4

use :: (Shape s, Elt t) => Array s t -> Acc (Array s t)
constant :: Elt t => t -> Exp t

to do this.
In general, lifted data cannot be unlifted without evalu-

ation; conceptually, lifted data corresponds to an abstract
representation on which Accelerate is able to perform optimi-
sations on like stream fusion. In that sense, the values which
correspond to notional unlifting are in general not available
until execution time, as Accelerate itself utilises a backend
(say, LLVM) to generate code, which cannot directly interface
with Haskell due to this abstraction barrier. Instead, for each
backend, the
run :: (Shape s, Elt t) => Acc (Array s t) -> Array s t

function is provided5, which when called generates code
for the target architecture, compiles it and then executes it.

Hence we introduce a constructor Embed to carry Flats
which have lifted data:
data Embed fs a where

Embed :: (Shape (ToShape fs))
=> Acc (Array (ToShape fs) a) -> Embed fs a

embed :: Elt a => Flat fs a -> Embed fs a
embed (Flat xs) = Embed (use xs)

This, along with some wrappers around primitive Accel-
erate functions, allows us to lift Hypers into the domain of
Accelerate and manipulate it just as efficiently.

To avoid introducing Embed, one might think to instead
wrap computations concerning Flats with calls to use
and run, which conceptually loads data into the hardware-
accelerated backend (say, the GPU), runs the computation,
and then retrieves the result, locally for every calculation.
However, this is inherently flawed for two reasons:

1. this would prevent Accelerate from being able to per-
form many of its optimisations, like stream fusion;

2. communication overhead is extremely high — the rate
of transfer across the system bus on modern hardware
is far slower than actual calculation;

doing this in practice would result in a program which is
too slow for all but the most trivial programs.

5 MONONAPERIAN
Another area in which performance can be gained is the mem-
ory architecture of GHC. Due to parametric polymorphism,
all Functors contents are represented by a individual pointers
to the heap — each element is a boxed value; for a vector

4Slightly simplified compared to the real thing.
5Simplified again. Exp scalars embed into Acc arrays too.

of integers, this is less than desirable, and creates noticable
overhead.6

If we are to specialise for vectors of primitave types,
we would like to build our Vector type atop some-
thing like Data.Vector.Unbox, which stores unboxed
values like integers of type Int# (long ints). However,
while Data.Vector.Unbox exposes a similar interface to
Data.Vector, its implementation is based on type families
to pick a specialised representation for every element
type (known as monomorphic specialisation). As such, its
elements need to be instances of the Unbox type class (for
which instances for standard primitave types are provided
by the vector package), and also Data.Vector.Unbox is not
a Functor (which is a polymorphic container). This means
that our existing machinery will not work as-is.

In order to overcome this, the mono-traversable pack-
age provides the typeclass MonoFunctor for working with
monomorphic containers:
class MonoFunctor mono where

omap :: (Element mono -> Element mono)
-> mono -> mono

Categorically, where an ordinary Functor can be thought
of as an endofunctor from Hask to itself, a MonoFunctor can
be thought of as a functor from a one-object subcategory of
Hask to another one-object subcategory of Hask, through
the inverse image of the Element type function. Element is a
type function which takes a monomorphic container (such as
Text) to the type of its elements (Char).

A monomorphic container does not expose a type variable
for its Element type, so its implementation can be fixed. Most
importantly, it knows exactly what size its elements are and
so can optimise accordingly.

We describe the MonoNaperian typeclass as follows:
class MonoFunctor f => MonoNaperian f where

type MonoLog f
olookup :: f -> MonoLog f -> Element f
otabulate :: (MonoLog f -> Element f) -> f
This interface is not as nice to work with, as there is

no way to implement the equivalent of positions because
the MonoFunctor f is only able to contain elements of type
Element f and not MonoLog f.

Fortunately, this is not crucial to the essence of a Naperian
functor, and we can still implement the three key array
operations:
-- replication
oreplicate :: MonoPointed f => Element f -> f
oreplicate = opoint

-- transposition
otranspose :: (MonoNaperian f

, MonoNaperian (Element f)
, MonoNaperian g
, MonoNaperian (Element g)

6For a detailed discussion on boxing, along with a GHC proposal to
combine unboxing with polymorphism, see Eisenberg and Peyton Jones
(2017).

Nick Hu

, Element (Element f)
~ Element (Element g)

, MonoLog (Element f) ~ MonoLog g
, MonoLog f ~ MonoLog (Element g))

=> f -> g
otranspose = otabulate . fmap otabulate

. flip . fmap olookup . olookup

-- zipping
ozipWith :: MonoNaperian f

=> (Element f -> Element f -> Element f)
-> f -> f -> f

ozipWith f xs ys = otabulate (\i -> f (olookup xs i)
(olookup ys i))

The type signature of otranspose is much longer, but is
essentially the same as before — take careful note that the
fmaps are for the (->) e instance and can be replaced by
function composition. Zipping this time is implemented lever-
aging the MonoNaperian interface, as we lack an analogue to
the Applicative <*>. In fact, there is no MonoApplicative,
only MonoPointed:
class MonoPointed mono where

opoint :: Element mono -> mono
which provides the equivalent of Applicative’s pure with-

out <*>, and this achieves replication.

5.1 MonoHyper
The notion of a dimension of along a monomorphic type is
as before7:
class (MonoPointed f, MonoNaperian f, MonoTraversable f)

=> MonoDimension f where
osize :: f -> Int
osize = length . otoList
As before, we define a polymorphic nested datatype to

represent monomorphic arbitrary rank hypercuboids:
data MonoHyper :: [Type] -> Type -> Type where

OScalar :: a -> MonoHyper '[] a
OPrism :: (MonoDimension f)

=> MonoHyper fs f
-> MonoHyper (f ': fs) (Element f)

type instance Element (MonoHyper fs a) = a
To pursue this avenue further, one would need to

overcome the problem of nesting unboxed vectors
inside one-another, as a Data.Vector.Unbox is not an
instance of Unbox. Arguably, this is crucial to the use-
fulness of hypercuboids.

6 CASE STUDY: k-MEANS
CLUSTERING

The k-means clustering problem, in machine learning and
data mining, is the problem of partitioning a dataset into
k clusters, with each point associated to the cluster with
7with an additional convenience function to extract the size of the
dimension

the nearest mean. Visualising each point as a point in n-
dimensional space, a cluster of points is merely a set, and
we call its mean (or ‘centroid’) the virtual point given by
the point-wise mean along each dimension. Intuitively, this
is the problem of splitting a dataset into k groups based on
similarity.

Distance is typically given by the squared Euclidean dis-
tance, as this avoids a computationally expensive square root
operation and preserves the ‘closer’ relation8. The problem of
finding the optimal clusters, such that the sum over distances
from each centroid to their associated points is minimised, is
NP-hard; however, there is a standard algorithm (Lloyd’s)
which iteratively reaches a local optimum and is sufficient for
most applications. In the sequel, we outline the algorithm:

1. fix k initial centroids;
2. for each point, associate it to its nearest centroid;
3. each centroid is now associated to a cluster of points

- the new centroids in the next iteration are given by
point-wise mean of each cluster.

The algorithm terminates when the centroids have sta-
bilised, and for alternative distance functions termination is
not guaranteed.

We chose to case study this algorithm for three reasons:
1. it is simple and short to implement;
2. it is extremely paralisable;
3. it naturally extends up to n-dimensions.

6.1 kmeans benchmarking program
This benchmarking program consists of a Haskell program
which implements a kmeans clustering algorithm using Nape-
rian functors, and Flat embeddings of Naperian functors into
Accelerate, which can be executed using LLVM CPU-native
instructions or LLVM PTX (similar to Nvidia CUDA) Nvidia
GPU instructions. The components consist of:

• kmeans - the main program;
• GenSamples - a program to generate sample data to be

fed into the algorithm based on parameters specified
from the command line;

• benchmark.sh - a shell script to run everything to-
gether, reading seeds for the random generation of
samples from seeds.txt.

6.1.1 Methodology. The kmeans program can be run in one
of three modes,

• --naperian - i.e. in pure Haskell mode without any
hardware acceleration;

• --accelerate-llvm-native - leveraging Accelerate
and LLVM to generate optimised CPU instructions;

• --accelerate-llvm-ptx - leveraging Accelerate and
LLVM PTX to generated instructions for Nvidia GPUs
(formerly, this was Accelerate’s CUDA backend).

As a parameter, it accepts the number of points to run
with the algorithm, loaded from the start of points.bin
with truncation: i.e. if points.bin contains 3000 points, yet
8i.e. if a is Euclidean-closer to b than c, then it is also squared-
Euclidean-closer.

Accelerating Naperian functors

kmeans is ran with -p 1000 it will load only the first 1000
points in points.bin and ignore the rest. We consider effi-
ciency of the algorithm by considering the number of points
input against running time until convergence (with a timeout
specified by -t), fixing the number of target clusters at 5,
and the dimensionality at 29. The -m flag specifies a point
multiplier, which is applied repeatedly applied to the number
of points until either the algorithm runs so long it times out
or we reach the maximum number of points in the data.

For each dataset, we run the program three times (one
for each implementation), recording the number of points,
the time taken, and the result of the algorithm (assuming it
didn’t timeout), in each iteration of the algorithm. We then
regenerate the dataset and repeat this process, until we have
30 sets of results. It is expected that by taking the average
running time of n points using each of the different implemen-
tations that we can measure how ‘fast’ each implementation
is.

6.1.2 Reproducibility. For reproducibility, everything is
neatly packaged into a Docker image (see Dockerfile in the
directory above), so data can be collected from any machine
with Docker installed10 simply by
docker run --runtime=nvidia \

-v /directory/to/dump/data:/mnt/results \
-it nickhu/kmeans
Alternatively, stack should be able to install and run this

program, but note especially that installing the required
Nvidia runtimes for LLVM PTX is quite fiddly.

Also included is a preset list of 30 seeds in seeds.txt
(which were randomly generated) which are used to collect
data in the main write up, but principally this can be replaced
with any file containing lines of seed integers.

6.2 Experimental results
The benchmark was performed on three different machines:

1. a desktop computer with a high-end consumer Nvidia
graphics card;

2. an ultrabook-class laptop (no discrete GPU, hence the
absence of the green line in Figure 4);

3. a p3.2xlarge Amazon Web Services instance, designed
for high-performance GPU computation.

Lloyd’s algorithm is practically linear in running time, so
we performed a linear regression analysis on samples which
remained after discarding all samples for point sizes where
there was a sample of that size or smaller such that a timeout
was observed. The rationale behind this cut off is as follows: a
timeout of 30 seconds means that we do not get any measure-
ments for runs which would have terminated after slightly
more than 30 seconds, so if we were to include any samples for
9In principle, the code should require only slight modifications to
change the dimensionality, especially the Hyper (native Haskell) ver-
sion; however, Accelerate integration required further specialisation
so modifying the Flat (Accelerate) version to support dimensional
polymorphism is expected to be more difficult.
10The --runtime=nvidia flag is optional, if the LLVM PTX Accelerate
backend is desired - this requires installation of nvidia-docker.

points of that size that we did have measurements for, then
the regression analysis would be skewed towards a shorter
time. The gradient of the linear regression approximates the
constant of the practically linear running time, while the
intercept approximates the overhead of the rest of the pro-
gram, along with other factors such as hardware and memory
latency.

In practice, the native Haskell implementation is several
orders of magnitude slower. One major observation is that
even in the absence of a GPU, Accelerate in combination
with LLVM produces code which still runs much faster. In
part, this is expected as attempt was made to write opti-
mised Haskell code; rather, the focus was comparing the
relative performance of the ‘obvious’ implementation with
and without using Accelerate.

Another observation, consistent with both Figure 3 and
Figure 5, is that until we have roughly 100,000 points of
data, the LLVM CPU implementation outperforms the GPU
version. It is expected this is due to latency: time-wise, the
transfer of data to the GPU is significantly more expensive
than to the CPU, so it is only when we have sufficiently large
data to process that we begin to see tangible gains from GPU
computing.

In summary, Accelerate in either mode does provide very
substantial performance gains.

7 CONCLUSION
In this work, we explored some ways to improve the per-
formance of Naperian functors, particularly focusing on the
Accelerate library. We have shown that Haskell, while not
explicitly designed to be efficient with respect to data parallel
programming, can achieve fast performance in conjunction
with Accelerate. Using the techniques from before, we have
shown that Naperian data types and Accelerate data types
have some compatibility, which can be utilised to enable us
to write programs in an abstract style with Naperian functors
while leveraging the raw performance of Accelerate.

REFERENCES
Chakravarty, Manuel M T, Gabriele Keller, Sean Lee, Trevor
L McDonell, and Vinod Grover. 2011. “Accelerating Haskell
array codes with multicore GPUs.” In DAMP ’11: The 6th
Workshop on Declarative Aspects of Multicore Programming.
ACM.

Eisenberg, Richard A., and Peyton JonesSimon. 2017. “Lev-
ity Polymorphism.” In Proceedings of the 38th Acm Sigplan
Conference on Programming Language Design and Imple-
mentation, 525–39. PLDI 2017. New York, NY, USA: ACM.
https://doi.org/10.1145/3062341.3062357.

Gibbons, Jeremy. 2017. “APLicative Programming with
Naperian Functors.” In European Symposium on Program-
ming, edited by Hongseok Yang, 10201:568–83. LNCS. https:
//doi.org/10.1007/978-3-662-54434-1_21.

McDonell, Trevor L, Manuel M T Chakravarty, Vinod
Grover, and Ryan R Newton. 2015. “Type-safe Runtime

https://github.com/NVIDIA/nvidia-docker
https://doi.org/10.1145/3062341.3062357
https://doi.org/10.1007/978-3-662-54434-1_21
https://doi.org/10.1007/978-3-662-54434-1_21

Nick Hu

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Points

T
im

e
[s

]

linux-x86_64-8_threads-Intel(R)_Core(TM)_i7-2600_CPU_@_3.40GHz-GeForce_GTX_1070

1.73 · 10−4·x + 0.33 Native Haskell

7.94 · 10−7·x + 0.12 Accelerate PTX

1.38 · 10−6·x + 5.58 · 10−2 Accelerate LLVM

Figure 3: Desktop benchmark

Code Generation: Accelerate to LLVM.” In Haskell ’15: The
8th Acm Sigplan Symposium on Haskell, 201–12. ACM.

Accelerating Naperian functors

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·105

0

1

2

3

4

5

6

7

8

9

10

Points

T
im

e
[s

]

linux-x86_64-4_threads-Intel(R)_Core(TM)_i7-5500U_CPU_@_2.40GHz

2.73 · 10−4·x + 0.97 Native Haskell

2.95 · 10−6·x + 0.11 Accelerate LLVM

Figure 4: Laptop benchmark

Nick Hu

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

·105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Points

T
im

e
[s

]

linux-x86_64-8_threads-Intel(R)_Xeon(R)_CPU_E5-2686_v4_@_2.30GHz-Tesla_V100-SXM2-16GB

1.78 · 10−4·x + 0.17 Native Haskell

5.33 · 10−7·x + 0.14 Accelerate PTX

1.3 · 10−6·x + 5.05 · 10−2 Accelerate LLVM

Figure 5: Amazon Web Services p3.2xlarge

	Abstract
	1 Introduction
	2 Hypercuboids and Accelerate Arrays
	3 Going back with overloaded lists
	4 Hyper-Flat embedding
	4.1 Embed

	5 MonoNaperian
	5.1 MonoHyper

	6 Case study: k-means clustering
	6.1 kmeans benchmarking program
	6.2 Experimental results

	7 Conclusion
	References

