
Category Theory for Functional Programmers
Functors, Natural Transformations, Adjunctions

Nick Hu
University of Oxford

nick.hu@cs.ox.ac.uk

ABSTRACT

Category Theory is a very abstract theory of mathematical
structure, which has strong links with functional program-
ming. In this essay, I explore basic category theory construc-
tions using insights from functional programming to provide
examples and motivation. The categorical triad of functori-
ality, naturality, and universality (adjunction) is ubiquitous
in mathematical spheres, and I aim to cover it in a brief yet
elucidating manner, unburdened from complex heavy rigour
present in almost any graduate text on category theory.

INTRODUCTION

Categories are the essence of composition, category theory
yields a ubiquitous language interesting to logicians, philoso-
phers, computer scientists, mathematicians, and physicists
alike. In fact, Baez (2010) goes on to suggest that often
different concepts in wildly different disciplines are actually
merely different exposition for ‘the same’ phenomena.

For computer science especially, category theory ‘gives a
precise handle on important notions such as compositional-
ity, abstraction, representation-independence, genericity and
more’ (Abramsky and Tzevelekos 2010).

More fundamental still, is that category theory attempts to
address and challenge the age-old problem of what formal
‘equality’ means and what is actually desirable — notions of
equality from set theory are fraying at the edges in modern
mathematics, as seen in the new and fast-moving field of
Homotopy Type Theory.

Certain categories, which will be touched on later, suffice to
model computation and logic; a prime example of this is the
relationship between the simply-typed 𝜆-calculus, intuitionis-
tic logic, and Cartesian Closed Categories, as stipulated by
the Curry-Howard-Lambek correspondence.

Much of this essay is inspired by Bartosz Milewski’s excellent
book on Category Theory for Programmers (2017), and that
is where the title comes from — a lot of this work can be
regarded as my personal distillation and insights from reading
it, presented as briefly as I could justify.

Throughout this essay, I will make assertions in bold — the
reader may treat these assertions as exercises to justify.

GROUNDWORK

A category 𝒞 is defined by a collection of objects, ob (𝒞), and
a collection of morphisms, hom (𝒞), which are maps between
objects. A morphism 𝑓 has a domain dom (𝑓) and a codomain
cod (𝑓), which are objects, and 𝑓∶ 𝑋 → 𝑌 or equivalently

𝑋
𝑓
→ 𝑌 is written to denote that 𝑓 is a morphism with

domain 𝑋 and codomain 𝑌.

Categories must also satisfy the following conditions:

• for each object 𝑋, there exists a morphism idX ∶ 𝑋 → 𝑋;
• for any two morphisms 𝑓∶ 𝑋 → 𝑌, 𝑔∶ 𝑌 → 𝑍, there exists

a composite morphism 𝑔 ∘ 𝑓∶ 𝑋 → 𝑍.

Composition must be associative, and identity morphisms
must act as a unit to composition, as shown in the following
commutative diagrams:

𝑋 𝑌

𝑋

idX

𝑓

𝑓

𝑋 𝑌

𝑌

𝑓

𝑓
idY

In a category, identity morphisms are necessarily unique.

The category which we are primarily interested in is Hask,
which has Haskell types as its objects and Haskell functions
as its morphisms.

To see that this forms a category, recall the polymorphic
function:

id :: a -> a
id x = x

then if any type A is an object of Hask, its identity mor-
phism is given by the monomorphic specialisation of id to
id :: A -> A.

Morphisms compose via ordinary Haskell function composi-
tion (post monomorphic specialisation):

(.) :: (b -> c) -> (a -> b) -> a -> c
(.) g f = \x -> g (f x)

For Hask to really be a category, ‘fast and loose reasoning’
will be used to conveniently pretend that Haskell functions
are total, and ignore concerns arising from ⊥ (Danielsson et
al. 2006).

These functions are sufficient to establish Hask as a category.

Nick Hu

In category theory, we generally don’t care about what the
objects are, but instead how they interact with each other
(via morphisms).

Other examples of a category include:

• Set, with objects as sets and morphisms as set-functions
between them;

• Pos, with objects as partially ordered sets and morphisms
as monotone maps;

• the category of a specific preordered set (𝑋, ≺), with
objects 𝑥 ∈ 𝑋 and morphisms 𝑥 → 𝑦 ⟺ 𝑥 ≺ 𝑦;1

• the category of a specific monoid (𝑀, ⋅, 𝑒), with a single
object and morphisms 𝑚 ∈ 𝑀. The identity morphism is
given by 𝑒, and composition is given by ⋅. If instead we
have a group, then all of the morphisms are isomorphisms;

• Cat, with objects as categories2 and morphisms as func-
tors;

• 𝒞op, the dual category to 𝒞 with the direction of its
morphisms reversed — 𝑓∶ 𝑋 → 𝑌 ∈ hom (𝒞) ⟺ 𝑓∶ 𝑌 →
𝑋 ∈ hom (𝒞op). If 𝒞 = 𝒞op then 𝒞 is self-dual;

• Rel, with objects as sets and relations as morphisms;
Rel is self-dual because relations are symmetric whereas
functions are not.

The category Set is very important, and new concepts will
frequently be introduced via Set.

Isomorphism

In a category 𝒞, if there is a morphism 𝑓∶ 𝑋 → 𝑌, and
a morphism 𝑔∶ 𝑌 → 𝑋 such that the following diagram
commutes:

𝑋 𝑌idX
𝑓

𝑔
idY

then 𝑋 and 𝑌 are isomorphic, and 𝑓 and 𝑔 are isomorphisms.

The problem of equality is a far-ranging one, but the usual def-
inition of extensional equality (or even intensional equality) is
often too strict. In category theory, isomorphism is commonly
regarded as a sufficient notion of ‘sameness’; often, category
theorists come up with universal constructions establishing
some property that is ‘unique up to unique isomorphism’
(canonical isomorphism).

An analogy from programming is the abstraction barrier: in
general, we don’t really care how an interface is implemented
given that it fully satisfies the specification. A stack can be
implemented using a linked list, a heap, or an array, and
correct implementations will behave indistinguishably in the
abstract — in the concrete, implementations will behave
differently, but beyond the concern of rationally reasoning
about correctness. Another way of viewing the isomorphisms

1Identity morphisms exist due to the reflexivity of the ordering relation,
and composite morphisms from transitivity.
2Which are small — 𝒞 is small when its collections of objects and
morphisms are set-sized. Cat itself is large, but otherwise we will only
consider small categories.

is as translations between different representations of the
same data — a linked list can be traversed and the contents
dumped into an array, and similarly a linked list can be built
from the contents of an array.

LIMITS AND COLIMITS

In a category 𝒞, a terminal object 1 is an object where every
other object 𝑋 in 𝒞 has a unique morphism 𝜄𝑋 targeting it
(i.e. ∀𝑋 ∈ ob (𝒞) ⋅ ∃! 𝜄𝑋 ⋅ 𝑋

𝜄𝑋
→ 1). Dually, an initial object 0

is an object where every other object 𝑋 in 𝒞 has a unique
morphism !𝑋 originating from it. Initial and terminal objects
are unique up to unique isomorphism.

In Set, ∅ is initial, and the singleton set {∗} is terminal.
To see why, consider the number of functions 𝑓𝑋 ∶ ∅ → 𝑋;
there is only one such function: the empty function. For any
set 𝑋, there is only one function 𝑓𝑋 ∶ 𝑋 → {∗}: the constant
function. This can be checked by considering that the number
of functions from two sets 𝑋 and 𝑌 is |𝑌||𝑋| — for the initial
object we have |𝑋|0 = 1, and for the terminal object we have
1|𝑋| = 1.

In Hask, the initial object is a type Void which has no con-
structors. The unique morphism associated to it is:

absurd :: Void -> a

As Void has no inhabitants, there is no meaningful definition
for this function, just as the empty set-function has no mean-
ingful map. The unit type, (), is terminal, and the unique
morphism associated to it is:

unit :: a -> ()
unit _ = ()

or equivalently unit = const ().

A useful, but naïve, intuition for the relationship between
Hask and Set is to treat each type as a set with cardinality
equal to the number of inhabitants of that type. Void has no
inhabitants, and thus corresponds to the empty set. Similarly,
unit has a single inhabitant () — it is unimportant what
that is, because all singleton sets are trivially canonically
isomorphic.

A product of two sets 𝑋 and 𝑌 is traditionally given
by {(𝑥, 𝑦) ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌} — the Cartesian product con-
struction. The product can alternatively be defined to be
{(𝑦, 𝑥)|𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}, or even {(𝑥, ∅, 𝑦) ∣ 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌}. As
long as our theorems about products of sets are aware of
which representation is chosen, they still hold, and indeed
these representations are isomorphic to each other.

Categorically, this implementation detail can be abstracted
away, and instead a product is defined in terms of an abstract
interface: a product of two objects 𝑋 and 𝑌 is an object
𝑋 × 𝑌 along with projection maps 𝜋1 ∶ 𝑋 × 𝑌 → 𝑋 and
𝜋2 ∶ 𝑋 × 𝑌 → 𝑌.

Category Theory for Functional Programmers

However, this definition is insufficient — the Cartesian
set product 𝑋 × 𝑌 × {0, 1} as a categorical product of
objects 𝑋 and 𝑌 in Set, with projection maps 𝜋1(𝑥, 𝑦, 0) ↦ 𝑥,
𝜋1(𝑥, 𝑦, 1) ↦ 𝑥 (and similarly for 𝜋2) satisfies this definition,
but this ‘product’ contains an extra bit of information. We
want our notions of product to be isomorphic to each other,
but there is no canonical mapping between the Cartesian set
products 𝑋 ×𝑌 → 𝑋 ×𝑌 ×{0, 1}. But the reverse map exists
canonically by simply forgetting the extra bit of information;
in general, this corresponds to the existence of a morphism
in Set from ‘products’ with too much information, to the
traditional Cartesian product.

Hence, for a satisfying definition of product, we require the
product object 𝑋 × 𝑌 be the ‘most extreme’ object in some
sense (hence limit); given a third object 𝑍 and morphisms
𝑓∶ 𝑍 → 𝑋 and 𝑔∶ 𝑍 → 𝑌, we require there to exist a unique
morphism ⟨𝑓, 𝑔⟩ ∶ 𝑍 → 𝑋 × 𝑌 making the following diagram
commute:3

𝑍

𝑋 𝑋 × 𝑌 𝑌

𝑓 ⟨𝑓,𝑔⟩ 𝑔

𝜋1 𝜋2

𝑍 corresponds to our object with necessary projection maps; a
‘product’ which might have too much information — if it truly
is a product, then by definition there would exist a unique
morphism 𝑋 × 𝑌 → 𝑍 establishing a unique isomorphism
between 𝑍 and 𝑋 × 𝑌. Another way of thinking about this is
that 𝑓 and 𝑔 factor through ⟨𝑓, 𝑔⟩.

In doing this, a more universal notion of product independent
from set membership ∈ is given, and it doesn’t matter which
one is used as products are canonically isomorphic (unique
up to unique isomorphism).

Cartesian set products are an instance of categorical product
in Set, with the obvious projection maps. In Hask, the product
of types A and B is the tuple type (A, B) with projection
maps fst :: (a, b) -> a and snd :: (a, b) -> b.

Some other examples of products:

• in the category of a specific partially ordered set, the
product of two objects is its meet/infimum/greatest lower
bound;

• in the category of logic predicates, the product of two
objects is its logical conjunction.

Dually, there is a notion of coproduct: a coproduct of two
objects 𝑋 and 𝑌 is an object 𝑋 + 𝑌 along with injection maps
𝑖1 ∶ 𝑋 → 𝑋 + 𝑌 and 𝑖2 ∶ 𝑌 → 𝑋 + 𝑌 such that the following
diagram commutes:

3A dashed arrow to is used to indicate uniqueness.

𝑋 𝑋 + 𝑌 𝑌

𝑍

𝑖1

𝑓
[𝑓,𝑔]

𝑖2

𝑔

In Set, the coproduct of 𝑋 and 𝑌 is given by the disjoint
union 𝑋 ⊎ 𝑌. In Hask, coproducts of types are sum types
tagged by constructors; the canonical example:

data Either a b = Left a | Right b

is the coproduct of polymorphic types a and b, with con-
structors Left :: a -> Sum a b and Right :: b -> Sum a
b providing the injection maps.

The existence of binary (co) products and a (initial) terminal
object implies the existence of arbitrary finite (co) products.

Algebra of types

These types are called ‘algebraic data types’ because Hask
is a monoidal category with respect to product, in the sense
that a is isomorphic to (a, ()) (the product of a and the
terminal object ()). As witness to the isomorphism:

rho :: (a, ()) -> a
rho = fst

rho_inv :: a -> (a, ())
rho_inv x = (x, ())

Hask is also monoidal with respect to coproduct (sum), with
a being isomorphic to Either a Void (the coproduct of a
and the initial object Void). As Void is uninhabited, only
terms with the Left constructor can be created, and so the
isomorphism is just to deconstruct or apply it.

Using the categorical syntax, we have established:

if 𝑎 is an object in Hask, then,

• 𝑎 × 1 ≃ 𝑎 — monoidal with respect to product, terminal
object as identity;

• 𝑎 + 0 ≃ 𝑎 — monoidal with respect to coproduct, initial
object as identity;

• 𝑎 × 0 ≃ 0 — (a, Void) also has no inhabitants.

Stretching this analogy, it can be shown that products
distribute over sums: 𝑎 × (𝑏 + 𝑐) ≃ 𝑎 × 𝑏 + 𝑎 × 𝑐, or in
Haskell by showing that (a, Either b c) is isomorphic to
Either (a, b) (a, c). Such an isomorphism is witnessed
by the following:

distribute :: (a, Either b c) -> Either (a, b) (a, c)
distribute (x, Left y) = Left (x, y)
distribute (x, Right z) = Right (x, z)

undistribute :: Either (a, b) (a, c) -> (a, Either b c)
undistribute (Left (x, y)) = (x, Left y)
undistribute (Right (x, z)) = (x, Right z)

Nick Hu

This means that Hask has a semiring structure, and
the naturals are further interpreted as the num-
ber of inhabitants of a type. For instance, the type
data Bool = True | False can be regarded as syntax
sugar for data Bool = Either (True (), False ())
where True and False are tags distinguishing distinct
singleton types; rewriting this categorically, we get
Bool = 1 + 1 = 2.

A more interesting example is the cons list:

data List a = Nil | Cons a (List a)
-- desugaring Nil and Cons into tags, uncurrying Cons
data List a = Either (Nil (), Cons (a, (List a)))

Categorically, writing 𝑥 for List a:

𝑥 = 1 + 𝑎 × 𝑥

= 1 + 𝑎 × (1 + 𝑎 × 𝑥) = 1 + 𝑎 + 𝑎2 × 𝑥

= 1 + 𝑎 × (1 + 𝑎 × (1 + 𝑎 × 𝑥)) = 1 + 𝑎 + 𝑎2 + 𝑎3 × 𝑥
= …

which precisely describes a list: it is a singleton (empty list),
or an a in a singleton list, or a 2-tuple (a, a) corresponding
to the 2-length list, etc.

EXPONENTIALS

In Set, the collection of morphisms from two sets 𝑋 and
𝑌 itself forms a set, which is called a hom-set, denoted by
Set(𝑋, 𝑌) or 𝑌 𝑋. As the objects of Set are all sets, 𝑌 𝑋 is
also an object of Set, so it is described as internal. Hask also
has internal hom-sets in the form of function types.

To describe this abstractly in the language of category theory,
this notion needs to be related to objects and morphisms. Let
𝑋, 𝑌, and 𝑌 𝑋 be objects in a category 𝒞 with binary products
such that there exists an evaluation morphism 𝜖 ∶ 𝑌 𝑋×𝑋 → 𝑌.
𝑌 𝑋 is an exponential object if for any other 𝑍 and 𝑓∶ 𝑍×𝑋 →
𝑌, there is a unique morphism ̃𝑓 ∶ 𝑍 → 𝑌 𝑋 that factors 𝑓
through 𝜖: 𝑓 = 𝜖 ∘ (̃𝑓 × idX).4

Equivalently, the following diagram commutes:

𝑌 𝑋 × 𝑋 𝑌

𝑍 × 𝑋

𝜖

̃𝑓×idX 𝑓

Looking at ̃𝑓, we see that it takes an object and gives us an
exponential object, corresponding to a function type in Hask;
this allows us to interpret ̃𝑓 as the curried version of 𝑓, and
our factorisation recovering 𝑓 from ̃𝑓 gives uncurrying.

The notation for the exponential objects is no coincidence,
and the normal algebraic exponentiation identities just fall
out (with equality swapped for isomorphism):
4The product of morphisms will be justified later, in the discussion of
the product functor, but for now ̃𝑓 × idX = ⟨ ̃𝑓, idX⟩.

• 𝑋0 ≃ 1,
• 1𝑋 ≃ 1,
• 𝑋1 ≃ 𝑋,
• 𝑋𝑌 +𝑍 ≃ 𝑋𝑌 × 𝑋𝑍,
• (𝑋𝑌)𝑍 ≃ 𝑋𝑌 ×𝑍,
• (𝑋 × 𝑌)𝑍 ≃ 𝑋𝑍 × 𝑌 𝑍.

These identities can be interpreted in Hask by polymorphic
invertible functions which serve as witness to the isomor-
phism, in the same fashion as the previous section on algebraic
data types.

Curry-Howard-Lambek

If a category has a terminal object, binary products, and
exponential objects, then it is Cartesian Closed. A Cartesian
Closed Category (CCC) provides sufficient structure to model
the simply-typed 𝜆-calculus, which is the core of functional
programming. It also models intuitionistic logic; consult the
following translation table (using Hask as an approximation
for simply-typed 𝜆-calculus):

Table 1: Curry-Howard-Lambek correspondence

CCC 𝒞 Intuitionistic Logic Hask

0 ⊥ Void
1 ⊤ ()
𝑋 × 𝑌 𝑥 ∧ 𝑦 (a, b)
𝑋 + 𝑌 𝑥 ∨ 𝑦 Either a b
𝑌 𝑋 𝑥 → 𝑦 a -> b

Now, our evaluation morphism 𝜖 ∶ 𝑌 𝑋 × 𝑋 → 𝑌 is interpreted
in Hask as a function eval :: ((a -> b), a) -> a which
corresponds to function application, and in logic as ((𝑥 →
𝑦) ∧ 𝑥) → 𝑦 — modus ponens. The Curry-Howard part of
the correspondence goes to say that a proof of a theorem is
equivalent to a typed expression with a type corresponding
to the formula. To prove such a theorem, it suffices to show
that eval’s type is inhabited:

eval :: ((a -> b), a) -> b
eval (f, x) = f x

and therefore modus ponens is a valid theorem in intuitionis-
tic logic.

In the same vein, the absurd function is an interpretation of
ex falso quodlibet (⊥ → 𝑥).

In fact, the Curry-Howard-Lambek correspondence states
that simply-typed 𝜆-calculus, intuitionistic logic, and CCCs
are isomorphic.

FUNCTORIALITY

A functor is a structure-preserving map between categories,
which preserves composition and identity morphisms; given

Category Theory for Functional Programmers

categories 𝒞 and 𝒟, and a functor 𝐹∶ 𝒞 → 𝒟 between them,
we have:

• 𝐹(𝑓∶ 𝑋 → 𝑌) = 𝐹(𝑓) ∶ 𝐹 (𝑋) → 𝐹(𝑌);
• for every object 𝑋 in 𝒞, 𝐹(idX) = idF(X) in 𝒟;
• 𝐹(𝑔 ∘𝒞 𝑓) = 𝐹(𝑔) ∘𝒟 𝐹(𝑓) whenever 𝑔 ∘ 𝑓 is defined in 𝒞.5

Some examples of functors:

• the forgetful functor from Mon to Set, which maps each
monoid to its underlying set (monoid homomorphisms
are weakened to functions);

• the selection functor mapping the trivial singleton cate-
gory to any non-empty category 𝒞;

• the constant functor Δ𝑋 ∶ 𝒞 → 𝒟 mapping every object
of 𝒞 to 𝑋 in 𝒟, and every morphism of 𝒞 to idX,

• the diagonal functor Δ∶ 𝒞 → 𝒞 × 𝒞 mapping objects 𝑋
in 𝒞 to 𝑋 × 𝑋 in the product category of 𝒞 with itself,
𝒞 × 𝒞,

• the product functor − × −∶ 𝒞 × 𝒞 → 𝒞, assuming 𝒞 has
binary products, mapping every object (𝑋, 𝑌) in 𝒞 × 𝒞 to
𝑋×𝑌 in 𝒞, and every morphism (𝑓, 𝑔) ∶ (𝑋, 𝑌) → (𝑋′, 𝑌 ′)
to 𝑓 ×𝑔∶ 𝑋 ×𝑌 → 𝑋′ ×𝑌 ′. 𝑓 ×𝑔 is given by ⟨𝑓 ∘𝜋1, 𝑔 ∘𝜋2⟩.

In Hask, functors6 are given by the Functor typeclass:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

The type constructor gives the object mapping, and fmap
gives the morphism mapping.

One intuition for Haskell functors is containers; for example
the Haskell list [] is a functor with fmap given by the standard
map function on lists. The option type Maybe is also functorial:

instance Functor Maybe where
fmap f Nothing = Nothing
fmap f (Just x) = Just (f x)

and so is Either a.

Contravariance

The functors presented so far are covariant functors. A functor
𝐹∶ 𝒞 → 𝒟 is contravariant if it maps morphisms 𝑓∶ 𝑋 → 𝑌
in 𝒞 to 𝐹(𝑓) ∶ 𝐹 (𝑌) → 𝐹(𝑋) in D. This is the same as a
covariant functor from 𝒞op to 𝒟. In Hask, this corresponds
to a different typeclass:

class Contravariant f where
contramap :: (b -> a) -> (f a -> f b)

Hom-functors

For objects 𝐴 and 𝐵 in a category 𝒞, the covariant hom-
functor 𝒞 (𝐴, −) ∶ 𝒞 → Set is defined. 𝒞 (𝐴, −) maps each
5Sometimes ∘𝒞 will be used to denote the composition in category 𝒞
where ambiguity may arise.
6More specifically, endofunctors — functors from a category back into
itself; in this case, Hask.

object 𝑋 in 𝒞 to the hom-set 𝒞(𝐴, 𝑋), and each morphism
𝑓∶ 𝑋 → 𝑌 to 𝒞(𝐴, 𝑓) ∶ 𝒞(𝐴, 𝑋) → 𝒞(𝐴, 𝑌) with mapping
𝑔 ↦ 𝑓 ∘ 𝑔 for each function 𝑔 in the hom-set 𝒞(𝐴, 𝑋).

In Hask, this is known as the Reader functor:

type Reader a b = a -> b
instance Functor (Reader a) where

fmap = (.)

Similarly, the contravariant hom-functor 𝒞 (−, 𝐵) ∶ 𝒞 → Set
is also defined, but the morphism map is instead postcompo-
sition:

type Coreader a b = b -> a
instance Contravariant (Coreader a) where

contramap = flip (.)

Functors which are naturally isomorphic to a hom-functor
are called representable.

In Hask, this can be encoded as follows:

class Representable f where
type Rep f :: Type
tabulate :: (Rep f -> x) -> f x
index :: f x -> (Rep f -> x)

We can think of the representable functor7 as a statically-
sized data structure which can be encoded as data in memory
f x, or isomorphically as a function from the indexing type
to the data type Rep f -> x, along with methods to trans-
form between the two encodings; i.e. the following diagram
commutes:

f x Rep f -> x
index

tabulate

A good example of this is a statically-sized vector of size 𝑛
— the Rep type is the finitely bounded naturals [0, 𝑛), which
give the indices of the vector. Then the Rep f -> x encoding
is interpreted as a sparse vector, and f x as a dense one.
The representable functor formalises the idea that these two
encodings are ‘the same data’ (isomorphism), and gives a
method to convert between the two, but in a computational
context one may be preferable over the other.

The pair type (a, b) is Representable in the same fashion.

NATURALITY

It is only natural to wonder if there is a notion of mapping
between functors; let 𝐹 and 𝐺 be two functors from 𝒞 to
𝒟, then a natural transformation 𝛼 from 𝐹 and 𝐺, denoted
𝛼∶ 𝐹 ⇒ 𝐺 is a family of morphisms 𝛼𝑋 ∶ 𝐹 (𝑋) → 𝐺(𝑋)
indexed by objects 𝑋 in 𝒞. Each particular morphism is
called the component of 𝛼 at 𝑋. The functors of the natural
transformation must map morphisms identically, and the
natural transformation must make the following diagram

7Also called a Naperian functor, where Rep f is like a logarithm of f
(Gibbons 2017).

Nick Hu

(naturality square) commute for each morphism 𝑓∶ 𝑋 → 𝑌 in
𝒞:

𝐹(𝑋) 𝐹(𝑌)

𝐺(𝑋) 𝐺(𝑌)

𝐹(𝑓)

𝛼𝑋 𝛼𝑌

𝐺(𝑓)

If every component of a natural transformation is an isomor-
phism, then it is a natural isomorphism, and this is our best
notion for two functors being ‘the same’.

Thinking about the components, natural transformation can
be considered as a mapping of objects to morphisms, such
that the resultant morphism has a commuting naturality
square. A lot of commuting diagrams that are required in
order to fulfil a particular property is really a naturality
square in disguise, given the correct choice of functors.

In Hask, a natural transformation looks like:

alpha :: (Functor f, Functor g) => F a -> G a

The genericity provided by the parametric polymorphic type
a suffices to define the whole natural transformation, and
this is a good intuition to understand them. In fact, due to
parametricity, in Hask the naturality condition:

(fmap f :: G a -> G b) . (alpha :: F a -> G a)
= (alpha :: F b -> G b) . (fmap f :: F a -> F b)

arises automatically for a function f :: a -> b, as a result
of free theorems (Wadler 1989). Furthermore, all the types
can be inferred.

If a functor is a generalisation of a container, then a natural
transformation is the generalisation of repacking data from
different containers. Naturality is the independence between
transforming the data with fmap and repacking — these two
operations commute.

Another interesting property is that because all standard
algebraic data types are functorial, polymorphic functions
between them are actually natural transformations (in the
opposite category to Hask, as function types are contravari-
ant).

Functor categories

A functor category of 𝒞 and 𝒟, denoted by [𝒞, 𝒟], is a cate-
gory in which the objects are functors 𝒞 → 𝒟, and morphisms
are natural transformations between them. Compositions of
morphisms are given by the vertical composition of natu-
ral transformations, as shown in the following commuting
diagram, given another functor 𝐻∶ 𝒞 → 𝒟 and natural trans-
formation 𝛽∶ 𝐺 ⇒ 𝐻:

𝐹(𝑋) 𝐹(𝑌)

𝐺(𝑋) 𝐺(𝑌)

𝐻(𝑋) 𝐻(𝑌)

𝐹(𝑓)

𝛼𝑋 𝛼𝑌

𝐺(𝑓)

𝛽𝑋 𝛽𝑌

𝐻(𝑓)

Cat is actually Cartesian closed, with the functor category
[𝒞, 𝒟] as the exponential object 𝒟𝒞.

ADJUNCTION

Two categories 𝒞 and 𝒟 are equivalent if there are a pair of
functors 𝐿∶ 𝒞 → 𝒟 and 𝑅∶ 𝒟 → 𝒞 such that the composition
in either direction is naturally isomorphic to the identity
functor of the respective category.

Adjunction is a slightly weaker notion than this, and it ap-
pears everywhere in mathematics and computer science. More
specifically, it is weaker in the sense that the composite func-
tor need not be naturally isomorphic to the identity functor,
but these directions of natural transformations should exist:

𝜂∶ 𝐼𝒞 ⇒ 𝑅 ∘ 𝐿,
𝜖 ∶ 𝐿 ∘ 𝑅 ⇒ 𝐼𝒟.

𝜂 and 𝜖 are called the unit and counit of the adjunction
respectively, and we use the notation 𝐿 ⊣ 𝑅 to denote that 𝐿
is the left-adjoint functor to 𝑅, and that 𝑅 is the right-adjoint
functor to 𝐿.

Adjunctions are subject to the following triangle identities
(in the functor category):

𝐿 𝐿 ∘ 𝑅 ∘ 𝐿

𝐿

𝐿∘𝜂

𝜖∘𝐿

𝑅 ∘ 𝐿 ∘ 𝑅 𝑅

𝑅

𝑅∘𝜖

𝜂∘𝑅

where the double line is the identity natural transformation.

In Hask, the unit is called:

return :: a -> m a

and the counit is:

extract :: m a -> a

which are exactly the lifting/unlifting operations of the Monad
and Comonad typeclasses — fundamentally, every monad and
comonad arises from adjunction.

An alternative but equivalent definition of adjunction can be
given in terms of hom-functors; given 𝑋, an object of 𝒞, and
𝑌, an object of 𝒟, an adjunction consists of functors 𝐿 and
𝑅 along with a natural isomorphism

Category Theory for Functional Programmers

𝒞(𝑋, 𝑅(𝑌)) 𝒟(𝐿(𝑋), 𝑌)
𝜓𝑋,𝑌

𝜙𝑋,𝑌

From this definition, unit can be derived:

∀𝑌 ∈ ob (𝒟) ⋅ 𝒟(𝐿(𝑋), 𝑌) ≃ 𝒞(𝑋, 𝑅(𝑌))
⟹ 𝒟(𝐿(𝑋), 𝐿(𝑋)) ≃ 𝒞(𝑋, (𝑅 ∘ 𝐿)(𝑋))

= 𝒞(𝐼𝑋(𝑋), (𝑅 ∘ 𝐿)(𝑋))

which precisely gives the natural transformation 𝜂 at each
component 𝑋 by taking idX along 𝜙𝑋,𝑌.

The counit can be derived similarly, and the hom-functor def-
inition can be derived from unit and counit.

Many universal constructions, including product and expo-
nential, arise from adjunction.

A free construction, given functorially, is a nice notion of
‘canonical’ ways to create structure; for instance, given any
set 𝑋, a free monoid consisting of elements of that set un-
der concatenation can be generated, introducing a special
null-character 𝜖 as an identity (very similar to Kleene star
construction). Free functors are left adjoint to a forgetful
functor, which ‘forgets’ some structure. The free monoid func-
tor from Set to Mon is left adjoint to the forgetful functor
from Mon to Set which maps each monoid to its underlying
set.

Following this, one intuition for adjunctions is as a way to
create some sort of ‘canonical approximation’.

Some more examples of free/forgetful adjunctions:

• the category of integers ℤ with morphisms given by the
ordering ≤ has a injection functor 𝑖 ∶ ℤ → ℝ – the floor
and ceiling functors back into ℤ are right and left adjoints
to 𝑖;

• the category Top, of topological spaces and continuous
maps, has a forgetful functor into Set which takes each
topological space to its underlying set — the left adjoint
takes a set to its ‘finest’ topology: the discrete topology
whereby every element is a singleton open set; the right
adjoint takes a set to its ‘coarsest’ topology, the trivial
topology whereby only the whole set is open.

FURTHER TOPICS

• Cat as a 2-category, and higher category theory.
• More limit constructions: equalisers, pullbacks.
• Limits and colimits in terms of universal cone/cocones.
• Properties of functors: full, faithful, injective on objects

and essentially surjective. Notions of embedding and
equivalence described only with functors.

• Yoneda lemma — all Set-valued functors arise via natural
transformation of hom-functors.

• Universal constructions via adjunction.

• Right adjoint functors preserve limits, and left adjoint
functors preserve colimits.

• Monads, Kleisli categories, and Eilenberg-Moore algebras.

REFERENCES

Abramsky, Samson, and Nikos Tzevelekos. 2010. “Introduc-
tion to Categories and Categorical Logic.” In New Structures
for Physics, 3–94. Springer.

Baez, John, and Mike Stay. 2010. “Physics, Topology, Logic
and Computation: A Rosetta Stone.” In New Structures for
Physics, 95–172. Springer.

Danielsson, Nils Anders, John Hughes, Patrik Jansson, and
Jeremy Gibbons. 2006. “Fast and Loose Reasoning Is Morally
Correct.” SIGPLAN Not. 41 (1). New York, NY, USA: ACM:
206–17. doi:10.1145/1111320.1111056.

Gibbons, Jeremy. 2017. “APLicative Programming with
Naperian Functors.” In European Symposium on Program-
ming, edited by Hongseok Yang, 10201:568–83. LNCS.
doi:10.1007/978-3-662-54434-1_21.

Milewski, Bartosz. 2017. “Category Theory for Pro-
grammers.” https://bartoszmilewski.com/2014/10/28/
category-theory-for-programmers-the-preface/.

Wadler, Philip. 1989. “Theorems for Free!” In Proceedings of
the Fourth International Conference on Functional Program-
ming Languages and Computer Architecture, 347–59. FPCA
’89. New York, NY, USA: ACM. doi:10.1145/99370.99404.

https://doi.org/10.1145/1111320.1111056
https://doi.org/10.1007/978-3-662-54434-1_21
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/
https://doi.org/10.1145/99370.99404

	Abstract
	Introduction
	Groundwork
	Isomorphism

	Limits and colimits
	Algebra of types

	Exponentials
	Curry-Howard-Lambek

	Functoriality
	Contravariance
	Hom-functors

	Naturality
	Functor categories

	Adjunction
	Further topics
	References

