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ABSTRACT

Monads are often a mysterious topic in functional program-
ming, partly due to their abstract nature and how they ap-
pear in many seemingly unrelated areas.
Furthermore, there is a plethora of material to guide one to
‘understanding monads’ which make liberal use of analogy
and skip mathematical reasoning. Such material can leave
a reader baffled, and contributes to the wide opinion that
monads are mysterious.
I address this by presenting monads from their definitions
in Haskell, with commentary on what the laws intuitively
mean.
Then, I explore monads from a mathematical perspective,
introducing basic Category theory, and showing how this
allows us to reason about monads in Haskell.
Finally, I examine some of the broader applications of mon-
ads by looking at the Maybe and list monads.

INTRODUCTION
Monads have existed in Haskell for a very long time now,
and their utility pervades almost every corner of modern
and useful Haskell code.
Every Haskell program uses at least one monad, as the en-
trypoint is
main :: IO ()
However, monads themselves are about so much more than
just IO, and you may already be using them without realising
it.
IO is indeed a monad instance, but not a very nice one -
the compiler treats it specially [Team 2016], and it is not
very nice to reason about it - instead, we shall explore some
monads which do not put into question Haskell’s purity.
In learning Haskell, lasting understanding comes from un-
derstanding the types, so we shall build up from the ground
up. The reader is expected to have a basic understanding of
Haskell, including understanding the typeclass mechanism
and the relation between types and kinds.

MONADS VIA APPLICATIVE FUNCTORS
Monad is a typeclass in Haskell, and is a subclass of
Applicative, which in turn is a subclass of Functor.
Each of these typeclasses has laws, which are not enforced
by the compiler, but are necessary to preserve their relation-
ships to the mathematical objects they represent.

Functor
From the Haskell Prelude, we have the typeclass Functor

(of kind * -> *):
class Functor f where
fmap :: (a -> b) -> f a -> f b

We can think of a functor as something that can be mapped
over, like a container; Haskell lists ([]) are functors with
map as fmap. This is even clearer when the types are lined
up:
fmap :: (a -> b) -> f a -> f b
map :: (a -> b) -> [a] -> [b]

Observe that the type of fmap can also be written as
(a -> b) -> (f a -> f b). If we let g :: a -> b
be a function, with domain a and codomain b, then
(fmap g) :: f a -> f b is a function with domain f a
and codomain f b; in other words, the domain and
codomain of g has been ‘lifted’ into the functor f.

Laws

fmap must satisfy the functor laws1 , defined as:
fmap id = id
fmap (g . h) = (fmap g) . (fmap h)
Intuitively, this can be thought of as limiting fmap to not
change the structure of the functor, but only its value. The
second functor law states that mapping h and then g over
a functor is the same as mapping the composite g . h over
that functor, which generalises fusion over all functors.

Applicative
An applicative functor, captured by the Applicative type-
class, is a special kind of functor:
class Functor f => Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

pure allows any value to be ‘lifted’ into the applicative func-
tor, and <*>2 can apply functions lifted into the functor on
values inside that functor.

Laws

Applicative functors must maintain their relation to functors
such that:
fmap g x = pure g <*> x
In addition, applicative functors must also satisfy several
laws:

• Identity: pure id <*> v = v

1Kmett [2015] argues that the second functor law can be
derived from the first as a free theorem [Wadler 1989], but
this does not yet seem to have become universally accepted
in the Haskell community.
2<*> is pronounced ‘ap’ as in ‘apply’.



• Homomorphism: pure g <*> pure x = pure (g x)
• Interchange: x <*> pure y = pure ($ y) <*> x

– ($ y) is syntactically equivalent to (\g -> g y).
• Composition:
x <*> (y <*> z) = pure (.) <*> x <*> y <*> z

These laws facilitate a form of normalisation, specifically
such that any expression written with pure and <*> can be
transformed into an expression using pure only once at the
beginning, and left associative3 occurences of <*> [McBride
and Paterson 2008].
This introduces the notion of the applicative idiom in Haskell
code, whereby a chain of applicative and non-applicative
values can be applied to a non-applicative function:
g :: t1 -> t2 -> t3 -> ... -> tm -> tn
x :: f t1
y :: t2
(pure y) :: f t2
...
z :: f tm
(pure g) :: f (t1 -> t2 -> t3 -> ... -> tm -> tn)
(pure g <*> x) :: f (t2 -> t3 -> ... -> tm -> tn)
(pure g <*> x <*> pure y) :: f (t3 -> ... -> tm -> tn)
(pure g <*> x <*> pure y <*> ... <*> z) :: f tn
We can interpret this as a sequence of ‘actions’, delimited by
<*>. It is also no coincidence that fmap = liftA = liftM,
which is where the terminology for ‘lifting’ comes from, and
in fact this is a relic of older versions of ghc where the
Functor-Applicative-Monad hierarchy had not been explic-
itly encoded in the typeclass definitions. Indeed, this pat-
tern is a generalisation up to n terms for liftA2 and liftA3
which respectively operate on 2 and 3 terms.
<$> is also provided in Haskell as an infix version of fmap; we
can apply the applicative idiom by rewriting the first equa-
tion to g <$> x = pure g <*> x. This pattern seems to
occur very frequently; for example, when sequencing effect-
ful computations [McBride and Paterson 2008], or efficient
context-free parsing [Röjemo 1995].
Applicative functors offer more power than a regular functor,
enabling the sequencing of applicative actions and injection
of non-applicative values into applicative context, but none
of the actions in sequence can depend upon previous actions.

Monad
The typeclass Monad is a subclass of Applicative, and de-
fines an additional operator:4
class Applicative m => Monad m where
(>>=) :: m a -> (a -> m b) -> m b

>>=5 allows a value to be taken out of a monadic context,
and then applied to some function which lifts it into the
same monad, before returning that monadic value.
>> is a convenience function, defined by
(>>) :: Monad m => m a -> m b
x >> y = x >>= (\_ -> y)
and is used to sequence monadic actions when the value can

3As function application associates to the left, such an ex-
pression does not need to be bracketed.
4The actual definition in ghc contains more functions, like
return, >>, and fail. However, return is always equiva-
lent to pure and exists from pre-Functor-Applicative-Monad
hierarchy, and fail is a shim to allow for partial pattern
matching. I have also omitted fixivity declarations as they
are clear in reading.
5>>= is pronounced ‘bind’.

be discarded; for example, some actions in the IO monad
don’t produce useful values, but running the action itself is
useful (e.g. putStrLn :: String -> IO ()).
Consider the Prelude function:
(=<<) :: Monad m => (a -> m b) -> m a -> m b
(=<<) = flip (>>=)
It is interesting to line it up against the type of <*> from
Applicative:
(<*>) :: Applicative m => m (a -> b) -> m a -> m b
(=<<) :: Monad m => (a -> m b) -> m a -> m b
So, it is clear that Monad allows the responsibility of lifting
into the monad to be delegated to the function that is sup-
plied to it, rather than a non-monadic function applied to
pure.
If we view m a as a computation, then (a -> m b) can op-
erate on the result of that computation, and give us a new
m b computation to be run. But, we can choose any m b we
want based on the value of a! This means that monadic ac-
tion sequencing allows for dependencies on previous monadic
values in the sequence, with >>= as our sequencing operator.
We will see later that this allows us to define list comprehen-
sions, and context-sensitive parsers6 .

Laws

Monads must adhere to three laws:
pure x >>= g = g x
x >>= pure = x
(x >>= g) >>= h = x >>= (\v -> g v >>= h)
The laws are difficult to reason about in this form,7 but we
will soon see an alternative and equivalent construction.
Note that the >>= operator looks a bit like composition, and
the monad laws look a bit like laws describing left identity,
right identity and associativity…

MONADS VIA CATEGORIES
Monads themselves were originally formulated in a theory
of mathematical structure called Category theory; many
monad tutorials gloss over Category theory entirely, but it
is an indispensable tool to understanding them, and can
be considered the basis for equational reasoning in Haskell
[Danielsson et al. 2006].

Definitions
Definition 1. A category C is defined to be a collection of

objects, ob (C), and a collection of morphisms (or arrows)
hom (C), where

• if f is a morphism, there exist objects
dom (f) and cod (f)

in ob (C) called the domain and codomain of f ; we
write

f : A → B

to indicate that dom (f) = A and cod (f) = B,
• given morphisms f : A → B and g : B → C, there
exists a morphism

g · f : A → C

6Due to general recursion and laziness in Haskell, we can ac-
tually do context-sensitive parsing with Applicative [Yorgey
2012].
7The reason this form is used is to facilitate do notation,
which can enable one to write something that ‘looks like’
imperative code whilst maintaining purity in Haskell.



called the composite of f and g,
• for each object A, there exists a morphism

idA : A → A

called the identity morphism of A,
and the following axioms hold:

• composition is associative:

h · (g · f) = (h · g) · f

for all f : A → B, g : B → C, and h : C → D,
• composition has left and right identities:

idB · f = f = f · idA

for all f : A → B.
Definition 2. A subcategory S of category C is given by a

subcollection of objects of C, ob (S), and a subcollection of
morphisms of C, hom (S), such that

• for every A in ob (S), its corresponding identity mor-
phism idA is in hom (S),

• for every morphism f : A → B in hom (S), both
dom (f) and cod (f) are in ob (S),

• for every pair of morphisms f and g in hom (S), the
composite f · g is in hom (S) whenever it is defined.

Note that S is just C with some of its objects and morphisms
removed.
Many things across many disciplines form categories (most
obviously, the category Set with mathematical sets as ob-
jects and functions as morphisms), but the category we are
interested in is Hask, where the objects are Haskell types
and the morphisms are Haskell functions, and its subcate-
gories.

Definition 3. Hask forms a category:8
• Every Haskell function has a domain and codomain
which can be encoded as Haskell types,

• For a morphism f :: a -> b, and a morphism
g :: b -> c, the composite (g . f) :: a -> c
exists,

• For each type a, the identity morphism exists as
id :: a -> a.

Furthermore,
• (.) is associative,
• with f :: a -> b, and by instantiating id with a
monomorphic type, we have

(id :: b -> b) . f = f = f . (id :: a -> a)
for all types a and b.

Functors

Definition 4. A functor

F : C → C
′

between categories C and C
′ maps ob (C) to ob (C′) and

hom (C) to hom (C′) such that the following axioms hold:
• F preserves domains and codomains:

F (f : A → B) = F (f) : F (a) → F (b),

• F preserves identities:

F (idA) = idF (A),

8
Hask is not a real category, due to undefined (⊥), but
for our purposes this can be safely ignored [Danielsson et al.
2006].

• F distributes over composition of morphisms:

F (f · g) = F (f) · F (g).

Definition 5. An endofunctor is a functor which maps a
category to itself.

Definition 6. The Haskell Functor typeclass specifies
functors from Hask. Given a type constructor f :: * -> *
and a higher-order function fmap :: (a -> b) -> (f a -> f b),
define func as a subcategory of Hask such that

ob (func) := types of the form f a,

hom (func) := functions with the signature f a -> f b.

Then it is clear that the pair (f, fmap) forms a functor from
Hask to func.
For example, the List subcategory of Hask contains only
list types [a] as objects, and functions of type [a] -> [b]
as morphisms, where ([], map) forms a functor from Hask

to List.
The functor laws described before are just the axioms for
functors in Category theory transcribed into Haskell!9

Monads

Definition 7. A monad is an endofunctor M : C → C,
with two morphisms for each object X in ob (C),

η : X → M(X),

and

µ : M (M(X)) → M(X),

such that the following axioms must also hold:10

µ · M(µ) = µ · µ,

µ · M(η) = µ · η = idX ,

η · f = M(f) · η,

µ · M (M(f)) = M(f) · µ,

where f is a morphism f : A → B for A and B in ob (C).
Definition 8. Monads can be formulated in Hask as fol-

lows:
class Functor m => Monad m where
unit :: a -> m a
join :: m (m a) -> m a

with η = unit and µ = join.
Note that unit is identical to pure from our previous monad
definition.
The monad axioms transcribed into Hask:
join . fmap join = join . join
join . fmap unit = join . unit = id
unit . g = fmap g . unit
join . fmap (fmap g) = fmap g . join
-- where g :: a -> b

Theorem 1. The function >>= is equivalent to fmap and
join.

9Functors preserving domains and codomains are guaran-
teed by the type of fmap.

10η and µ are usually interpreted as natural transformations
instead of morphisms in other literature about Category the-
ory.



Proof. For equivalence, it is necessary to show that a
function of the type of >>= can be constructed by an expres-
sion using only fmap and join and vice versa. Furthermore,
it is also necessary to show that the axioms for monads in
the category Hask imply the monad laws and vice versa.

Part 1. >>= can be written in terms of fmap and join*11.
x >>= y = join (fmap y x)

Part 2. The monad laws can be derived with the axioms
for monads in the category Hask.

1. First monad law:
pure x >>= g
= -- pure = unit
(unit x) >>= g
= -- definition of (>>=)
join (fmap g (unit x))
= -- composition
join ((fmap g . unit) x)
= -- third monad axiom
join ((unit . g) x)
= -- composition
(join . unit . g) x
= -- second monad axiom
(id . g) x
= -- id is left identity of composition
g x

2. Second monad law:
x >>= pure
= -- pure = unit
x >>= unit
= -- definition of (>>=)
join (fmap unit x)
= -- composition
(join . fmap unit) x
= -- second monad axiom
id x
= -- id is the identity morphism
x

3. Third monad law:
(x >>= g) >>= h
= -- definition of (>>=)
join (fmap h (x >>= g))
= -- definition of (>>=)
join (fmap h (join (fmap g x)))
= -- composition
join ((fmap h . join) (fmap g x))
= -- fourth monad axiom
join ((join . fmap (fmap h)) (fmap g x))
= -- composition
join ((join . fmap (fmap h) . fmap g) x)
= -- second functor law
join ((join . fmap (fmap h . g)) x)
= -- composition
(join . join . fmap (fmap h . g)) x
= -- first monad axiom
(join . fmap (join) . fmap (fmap h . g)) x
= -- second functor law
(join . fmap (join . fmap h . g)) x
= -- composition
join (fmap (join . fmap h . g) x)
= -- definition of (>>=)
x >>= (join . fmap h . g)

11Equations marked with a * are presented again in the ap-
pendix with additional type annotations to aid the reader.

= -- construct lambda
x >>= (\v -> join (fmap h (g v)))
= -- definition of (>>=)
x >>= (\v -> g v >>= h)

Part 3. join can be written in terms of >>=*.
join x = x >>= id
fmap can be written in terms of >>=*.
fmap g x = x >>= (pure . g)

Part 4. The monad axioms in the category Hask can be
derived from the monad laws.

1. First monad axiom:
(join . fmap join) x
= -- composition
join (fmap join x)
= -- definition of fmap
join (x >>= (pure . join))
= -- definition of join
(x >>= (pure . join)) >>= id
= -- third monad law
x >>= (\v -> (pure . join) v >>= id)
= -- composition
x >>= (\v -> pure (join v) >>= id)
= -- second monad law
x >>= (\v -> id (join v))
= -- id is the identity morphism
x >>= (\v -> join v)
= -- definition of join
x >>= (\v -> v >>= id)
= -- id is the identity morphism
x >>= (\v -> id v >>= id)
= -- third monad law
(x >>= id) >>= id
= -- definition of join
(join x) >>= id
= -- definition of join
join (join x)
= -- composition
(join . join) x

2. Second monad axiom:
(join . unit) x
= -- composition
join (unit x)
= -- definition of join
(unit x) >>= id
= -- pure = unit
(pure x) >>= id
= -- first monad law
id x

(join . fmap unit) x
= -- composition
join (fmap unit x)
= -- definition of fmap
join (x >>= (pure . unit))
= -- pure = unit
join (x >>= (pure . pure))
= -- definition of join
(x >>= (pure . pure)) >>= id
= -- third monad law
x >>= (\v -> (pure . pure) v >>= id)
= -- composition
x >>= (\v -> pure (pure v) >>= id)
= -- first monad law



x >>= (\v -> id (pure v))
= -- id is the identity morphism
x >>= (\v -> pure v)
= -- deconstruct lambda
x >>= pure
= -- second monad law
x
= -- id is the identity morphism
id x

3. Third monad axiom:
(unit . g) x
= -- first monad law
pure x >>= (unit . g)
= -- pure = unit
pure x >>= (pure . g)
= -- definition of fmap
fmap g (pure x)
= -- pure = unit
fmap g (unit x)
= -- composition
(fmap g . unit) x

4. Fourth monad axiom:
(join . fmap (fmap g)) x
= -- composition
join (fmap (fmap g) x)
= -- definition of fmap
join (x >>= (pure . fmap g))
= -- definition of join
(x >>= (pure . fmap g)) >>= id
= -- third monad law
x >>= (\v -> (pure . fmap g) v >>= id)
= -- composition
x >>= (\v -> pure (fmap g v) >>= id)
= -- first monad law
x >>= (\v -> id (fmap g v))
= -- id is the identity morphism
x >>= (\v -> fmap g v)
= -- definition of fmap
x >>= (\v -> v >>= (pure . g))
= -- id is the identity morphism
x >>= (\v -> id v >>= (pure . g))
= -- third monad law
(x >>= id) >>= (pure . g)
= -- definition of join
(join x) >>= (pure . g)
= -- definition of fmap
fmap g (join x)
= -- composition
(fmap g . join) x
Thus, >>= sufficiently defines fmap and join and vice
versa.

Kleisli categories of Hask

Definition 9. For any subcategory of Hask with mor-
phisms of type a -> b, define its Kleisli category to have the
same objects, but morphisms of type Monad m => a -> m b
where m is a monad. The identity morphisms are given by
instantiating unit :: a -> m a with the appropriate type,
and composition is given by*:
(<=<) :: Monad m =>

(b -> m c) -> (a -> m b) -> a -> m c
f <=< g = join . fmap f . g

Theorem 2. <=< is a suitable composition operator for a

Kleisli category.
Proof. For <=< to be considered a suitable composition

operator, we must show that is is associative and has left
and right identities.

Part 1. <=< is associative:
(f <=< (g <=< h)) x
= -- definition of <=<
(f <=< (join . fmap g . h)) x
= -- definition of <=<
(join . fmap f . (join . fmap g . h)) x
= -- composition
(join . fmap f) ((join . fmap g . h) x)
= -- composition
(join . fmap f) ((join . fmap g) (h x))
= -- composition
(join . fmap f) (join (fmap g (h x)))
= -- theorem 1
(join . fmap f) (h x >>= g)
= -- composition
join (fmap f (h x >>= g))
= -- theorem 1
(h x >>= g) >>= f
= -- third monad law
h x >>= (\v -> g v >>= f)
= -- theorem 1
h x >>= (\v -> join (fmap f (g v)))
= -- composition
h x >>= (\v -> (join . fmap f) (g v))
= -- composition
h x >>= (\v -> (join . fmap f . g) v)
= -- deconstruct lambda
h x >>= (join . fmap f . g)
= -- theorem 1
join (fmap (join . fmap f . g) (h x))
= -- composition
(join . fmap (join . fmap f . g)) (h x)
= -- composition
(join . fmap (join . fmap f . g) . h) x
= -- definition of <=<
((join . fmap f . g) <=< h) x
= -- definition of <=<
((f <=< g) <=< h) x

Part 2. <=< has left identity:
unit <=< f
= -- definition of <=<
join . fmap unit . f
= -- second monad axiom
id . f
= -- id is the identity morphism in Hask
f

Part 3. <=< has right identity:
(f <=< unit) x
= -- definition of <=<
(join . fmap f . unit) x
= -- composition
join . fmap f (unit x)
= -- composition
join (fmap f (unit x))
= -- theorem 1
unit x >>= f
= -- pure = unit
pure x >>= f
= -- first monad law



f x
Thus, <=< is suitable.

Theorem 3. The monad laws are equivalent to the
properties of the Kleisli composition operator.

Proof. From theorem 2, we establish that the monad
laws imply the existence of the Kleisli composition operator.
If we assume that the Kleisli composition operator is well de-
fined, because it is constructed entirely from join and fmap,
they must be well defined also, and therefore the existence
of the monad laws is implied by theorem 1.
So it is clear now that monads provide a generalisation of
function composition! The laws required by monads are
merely the properties of this special type of composition.

MONADS BY EXAMPLE
Now we shall examine how monads can be hidden behind the
syntax sugar of list comprehensions, and how Monad allows
us to do more than Applicative

List monad
Let’s focus on the list monad, and see how it is equivalent
to list comprehensions.
Define the instances for the list monad:
instance Functor [] where
fmap g [] = []
fmap g (x:xs) = g x : fmap g xs

instance Applicative [] where
pure x = [x]
[] <*> _ = []
(g:gs) <*> xs = (g <$> xs) ++ (gs <*> xs)

instance Monad [] where
xs >>= h = concatMap h xs

The reader is encouraged to try to derive an equivalent
expression which matches list comprehensions using only
fmap/<$>, pure, <*> and >>= — or similarly, an expression
which matches expressions built only from those functions
using only list comprehensions — before looking at the ex-
ample solution.

Mapping over lists

-- let f :: a -> b, xs :: [a], yss :: [[a]]
1. fmap f xs
2. [ [ f y | y <- ys ] | ys <- yss ]

-- solutions
1. [ f x | x <- xs ]
2. fmap (fmap f) yss
The functor instance allows lists to be mapped over.

Mapping multiple functions with multiple arguments
over lists

-- let g :: a -> b -> c,
-- fs :: [a -> b], gs :: [a -> b -> c],
-- xs :: [a], ys :: [b]
1. [ g x y | x <- xs, y <- ys ]
2. fs <*> xs
3. [ g x y | g <- gs, x <- xs, y <- ys ]

-- solutions
1. g <$> xs <*> ys

2. [ f x | f <- fs, x <- xs ]
3. gs <*> xs <*> ys
With the applicative functor instance, we can specify multi-
ple lists to draw from on the right side of the list comprehen-
sion, and we can apply multiple arguments to a function.

Filtering and depending on previous values

-- let f :: a -> b, p :: a -> Bool, xs :: [a]
1. [ f x | x <- xs, p x ]
2. [ y | x <- xs, y <- f x ]
3. [1..] >>= (\x -> [1..x] >>= (\y -> pure (x, y)))

-- solutions
1. xs >>= (\x -> if p x then pure (f x) else [])
2. xs >>= f
3. [ (x, y) | x <- [1..], y <- [1..x] ]
Thus, monads allow the values drawn to depend on previ-
ously drawn values, and we can apply functions to values as
they are drawn.

Choice
Firstly, define the instances for the Maybe monad:
instance Functor Maybe where
fmap _ Nothing = Nothing
fmap f (Just x) = Just (f x)

instance Applicative Maybe where
pure = Just
(Just f) <*> (Just x) = Just (f x)
_ <*> _ = Nothing

instance Monad Maybe where
(Just x) >>= f = f x
_ >>= _ = Nothing

Now we can take another look at this embodiment of ‘choice’
provided only by monads; consider the function of type:
ifM :: Monad m => m Bool -> m a -> m a -> m a
which satisfies equations:
ifM (pure True) t e = t
ifM (pure False) t e = e
This function can be defined as follows:
ifM mx t e = mx >>= (\x -> if x then t else e)
However, this cannot be defined using just an applicative
instance; if we try to come up with an expression for
ifA :: Applicative f => f Bool -> f a -> f a -> f a,
one might see that*
ifA mx t e =
(\x y z -> if x then y else z) <$> mx <*> t <*> e

typechecks.
But when we try to use each function, for example in the
Maybe monad, we see that ifM works as expected, but the
intended semantics do not hold for ifA:
ifM (Just True) (Just ()) Nothing
= -- definition of ifM
(Just True) >>=
(\x -> if x then (Just ()) else Nothing)

= -- definition of >>=
if True then (Just ()) else Nothing
= -- if expression True branch
Just ()

ifA (Just True) (Just ()) Nothing
= -- definition of ifA



(\x y z -> if x then y else z) <$>
(Just True) <*> (Just ()) <*> Nothing

= -- <*> left associative
((\x y z -> if x then y else z) <$>
(Just True) <*> (Just ())) <*> Nothing

= -- definition of <*>
Nothing
We need monads to be able to ‘short-circuit’ on actions in the
sequence, so they give us more choice - applicative functors
must run all of the actions. However, this means that with
applicative functors we can split up a sequence into chunks
which can be ran in parallel; in fact, the applicative functor
laws guarantee a property that is a bit like associativity for
<*>, with the caveat that functions must be fully applied.
As a final exercise, the reader is encouraged to show that
the laws for each instance of Maybe and [] hold.

CONCLUSION
We have seen how monads are built from both a Haskell and
a mathematical perspective, and how the two derivations
are related. Furthermore, we have explained how the laws
of monads work from three different structures. We have
also seen that monads are not just used for IO, and that
plenty of common - yet pure - code is monadic already.
Understanding monads is only the beginning, and their util-
ity and elegance is only realised in Haskell by becoming flu-
ent with instances of the Monad typeclass. When writing
code that sequences actions over containers, one might be
tempted to think: ‘Is my functor a monad?’

FURTHER READING
• Monads can be understood in terms of monoids [Piponi
2008].

• Applicative functors also have an alternative forma-
tion in category theory as lax monoidal functors [Yang
2012].

• Monad transformers allow monads to be combined into
a single monad to combine several effects [Grabmüller
2006].

• mtl monad classes provide typeclasses to generalise
over monads which provide the same effects.

• Lenses provide highly generic abstractions for getters,
setters traversals and folds over data types.

• Monads can be generalised into arrows [Hughes 2000].
• MonadZero, MonadPlus and Alternative allow for
monads to fail, monads to encode choice, and applica-
tive functors to have choice respectively by adding
monoidal properties [Yorgey 2009].

• Foldable and Traversable typeclasses provide gener-
alisations over data types which can be folded and se-
quenced respectively [Yorgey 2009].

• Comonads provide abstractions which can be viewed
as objects in the sense of object oriented programming
[Gonzalez 2013], or streams.

Some useful monad instances:

Table 1:
Monad Purpose
IO Impure actions sequenced for effectful computation.
List Models non-deterministic computation.
Maybe Computations which may or may not succeed.
Writer Collecting effects inside a monoid. Used for logging.
Reader Allows values to be queried from state (‘environment’).
State Similar to a combination of Writer and Reader.
ST Like escapable IO; allows for arbitrary mutable state.
STM Provides memory-safe concurrency via transactions.
Cont Computations which can be interrupted and resumed.

APPENDIX

DO NOTATION
do notation is a syntax sugar for monadic sequences using
>>=. It allows for the writing of programs which look very
much like imperative code, but is arguably harder to reason
about [Hudak 2007]; in particular, the order of statements in
a do block is not the same as the order of evaluation, which
is unlike any imperative language.
Plenty of Haskell code does use do notation, and as long
the writer of a Haskell program understands what the do
notation is doing, it is not dangerous. Fortunately, the rules
for do notation are rather simple:
do { a <- f ; m } ฀ f >>= \a -> do { m }
-- bind f to a, proceed to desugar m

do { f ; m } ฀ f >> do { m }
-- evaluate f, then proceed to desugar m

do { m } ฀ m
As per usual, a block delimited by semicolons and curly
braces can be written over multiple lines with appropriate
indentation.

TYPE ANNOTATIONS
x >>= y = join (fmap y x)
-- y :: a -> m b
-- (fmap y) :: m a -> m (m b)
-- (fmap y x) :: m (m b)
-- (join (fmap y x)) :: m b
join x = x >>= id
-- x :: m (m a)
-- (x >>=) :: (m a -> m b) -> m b
-- (x >>= id) :: m a
fmap g x = x >>= (pure . g)
-- x :: m a
-- g :: a -> b
-- (pure . g) :: a -> m b
-- (x >>= (pure . g)) :: m b
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
f <=< g = join . fmap f . g
-- (f) :: b -> m c
-- (g) :: a -> m b
-- (fmap f) :: m b -> m (m c)
-- (fmap f . g) :: a -> m (m c)
-- (join . fmap f . g) :: a -> m c
ifA mx t e =
(\x y z -> if x then y else z) <$> mx <*> t <*> e



-- (\x y z -> if x then y else z)
-- :: Bool -> a -> a -> a
-- (fmap (\x y z -> if x then y else z))
-- :: f Bool -> f (a -> a -> a)
-- ((\x y z -> if x then y else z) <$> mx)
-- :: f (a -> (a -> a))
-- ((\x y z -> if x then y else z) <$> mx <*> t)
-- :: f (a -> a)
-- ((\x y z -> if x then y else z) <$> mx <*> t <*> f)
-- :: f a
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