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Higher string diagrams

Variants of string diagrams provide diagrammatic calculi for various categorical
structures:

planar monoidal categories/degenerate 2-categories

braided braided categories/degenerate 3-categories

symmetric symmetric categories/degenerate 4-categories



Higher string diagrams (contd.)

Not degenerate when regions convey information:



n-dimensional manifold diagrams are diagrams for globular n-categories

semantics finitely presented n-categories

model associative n-categories

combinatorial model/syntax zigzag categories



Finitely-presented globular n-categories

Groups can be presented by generators-and-relations: elements of the group +
identifications of the form x · y = z .

Categories can also be presented by algebraically: underlying graph + identifications of
parallel paths (fancy: Cat monadic over Graph).

Such identifications are naturally seen as 2-cells.

Motto: an n-category is presented algebraically by a collection of globular cells in
dimensions 0 . . . n + 1 — a signature.

Also: every ω-category is ‘equivalent’ to a free one.
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Example: monoid object in a monoidal category

Consider a signature given by:

Σ0 := {x}
Σ1 := {f : x → x}
Σ2 := {m : f ◦ f ⇒ f , u : idx ⇒ f }
Σ3 := { m is associative, u the unit of m }



Example: monoid object in a monoidal category (contd.)

Structural equalities are captured by planar isotopy. E.g. for e : f ⇒ f :

idx ◦ e · e ◦ idx = e ◦ e = e ◦ idx · idx ◦ e.

= =



Zigzag categories: motivation

For some signature Σ, let PΣ denote its face poset. E.g. for a signature Σ with a 2-cell

𝑥 𝑦

𝑓

𝑔

𝛼

its face poset is

𝛼

𝑓 𝑔

𝑥 𝑦.



Zigzag categories: motivation (contd.)

As a category, PΣ is a ‘space’ of 0-dimensional diagrams with respect to Σ:

I x and y are objects; 3

I however, f , g, α are also objects. 7

What category is the ‘space’ of the 1-dimensional or 2-dimensional diagrams?



Zigzag categories: definition

Let C be a category.

Zig(C) is the category of

objects iterated cospans of C; feet are regular levels, tips are singular levels;

morphisms a collection of C-morphisms arranging into a monotone map between
singular levels such that, combined with the dual monotone map between
regular levels in the other direction labelled by morphisms of C, the
resulting planar diagram commutes in C.

Let Zign(C) denote the n-fold iterated zigzag category of C:

Zig0(C) := C,
Zign+1(C) := Zig(Zign(C)).
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Zigzag categories: example

Example:

object r0
f0−→ s0

b0←− r1
f1−→ s1

b1←− r2
morphism

𝑟 ′′0 𝑠′′0 𝑟 ′′1 𝑠′′1 𝑟 ′′2

𝑟 ′0 𝑠′0 𝑟 ′1 𝑠′1 𝑟 ′2

𝑟0 𝑠0 𝑟1

𝑓 ′′0

𝑖′
𝑗′

𝑏0 𝑓 ′′1 𝑏′′
1

𝑘′

𝑓 ′0

𝑖

𝑔′

𝑗

𝑏′
0 𝑓 ′1

ℎ′

𝑏′
1

𝑘

𝑓0

𝑔

𝑏0

compose
−−−−−−→

𝑟 ′′0 𝑠′′0 𝑟 ′′1 𝑠′′1 𝑟 ′′2

𝑟0 𝑠0 𝑟1

𝑓 ′′0

𝑖′◦𝑖
𝑗′◦𝑘

𝑏0 𝑓 ′′1 𝑏′′
1

𝑘′◦𝑘

𝑓0

ℎ′◦𝑔
𝑏0



Zigzag categories: fancy definition I

Let Z be the category with objects {rni | i ≤ n ∈ N} ∪ {sni | i < n ∈ N}, and morphisms
sets of monotone maps:

Z(sni , s
m
j ) :=

{
[n − 1]

α−→ [m − 1] | α(i) = j
}
,

Z(rni , r
m
j ) :=

{
[n − 1]

α−→ [m − 1] | Rα(j) = i
}
,

Z(rni , s
m
j ) :=

{
[n − 1]

α−→ [m − 1] | Rα(j) ≤ i ≤ Rα(j + 1)
}
,

Z(sni , r
m
j ) := ∅.

Composition is given by composition of monotone maps.

There is a canonical functor Z
p−→ ∆ that sends rni and sni to [n − 1], the universal zigzag

bundle, which is exponentiable in Cat.



Zigzag categories: fancy definition II

Cat
Zig(−)−−−−→ Cat is the polynomial functor determined by

Cat ∼= Cat/1 !Z
∗
−−→ Cat/Z

Πp−→ Cat/∆
Σ!∆−−→ Cat/1 ∼= Cat.

Let C and D be categories.

Functors D → Zig(C) are in bijection commuting diagrams of the form

C Z ×∆ D Z

D ∆.

ù
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n-dimensional diagrams live in Zign(PΣ)
Recall the face poset PΣ:

𝛼

𝑓 𝑔

𝑥 𝑦.

I Zig(PΣ) has objects

x → f ← y ,

x → g ← y ,

x → x ← x ,

x → f ← y → y ← y ,

. . .

I Zig2(PΣ) has objects
𝑥 𝑔 𝑦

𝑥 𝛼 𝑦

𝑥 𝑓 𝑦,

…
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Colimits in zigzag categories build ‘homotopies’

Height 2 diagram in Zign(C):

𝑟0 𝑠0 𝑟1 𝑠1 𝑟2
𝑓0 𝑏0 𝑓1 𝑏1

In short: the functor Zign(C)→ ∆ is (*) a Grothendieck opfibration — compute colimits
in ∆ and Zign−1(C) and lift them to get colimits in Zign(C).

For more details, see High-level methods for homotopy construction in associative
n-categories.
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Coherence problem for invertibility

Let x
f−→ y and y

f−1

−−→ x witness an isomorphism x ∼= y .

In a higher category, these give 2-cells:

f ◦ f −1 ⇒ idy , f −1 ◦ f ⇒ idx ,

f ◦ f −1 ⇐ idy , f −1 ◦ f ⇐ idx .

Coherence: the sequence

f = idy ◦ f ⇒ (f ◦ f −1) ◦ f = f ◦ (f −1 ◦ f )⇒ f ◦ idx = f

should correspond to the ‘do nothing’/identity 2-cell idf .

This itself is a 3-cell, generating further coherence conditions ad infinitum…
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Representing inverses

The 1-cell x
f−→ y is represented by the object in Zig(PΣ):

x → f ← y .

How should we represent y
f−1

−−→ x?

Answer: use symmetry

y → f ← x .

What about for an endomorphism x
g−→ x?
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Entrance path Pos-category I

The face poset associated to x
g−→ x is

𝑔

𝑥.

Have forgotten all the information about where x is on the boundary of g.
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Entrance path Pos-category II

𝑔

𝑓

𝑡

𝑏

•𝑥 • 𝑦

Face poset:

𝑡 𝑏

𝑓 𝑔

𝑥 𝑦.

Entrance path Pos-category refines the face poset to remember this information:

Hom(x , t) = {x → f → t ⇒ x → t ⇐ x → g → t} .



Entrance path Pos-category II
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Pos-enrich everything

Idea: we should enrich everything in Pos to start from PΣ being an entrance path
Pos-category instead of a face poset.

Need:

I a notion of ‘framed’ zigzag category Pos-category;
I what’s a Pos-enriched colimit in this context?
I when does an object of Zign(PΣ) represent an n-dimensional diagram?
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Intuition for Pos-categories

Categories give enough structure to express commutative diagrams.

Pos-categories give enough structure to express laxly commutative diagrams.

Example:

𝑦

𝑥 𝑦.𝑔

𝑓
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Intuition for Pos-categories

Categories give enough structure to express commutative diagrams.

Pos-categories give enough structure to express laxly commutative diagrams.

Example:
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Framed zigzag Pos-categories

Let C be a Pos-category.

Zig(C) is the Pos-category of

objects iterated cospans of C; feet are regular levels, tips are singular levels;

morphisms a collection of C-morphisms arranging into a monotone map between
singular levels such that, combined with the dual monotone map between
regular levels in the other direction labelled by morphisms of C, the
resulting planar diagram oplaxly commutes in C;

2-cell fillers pointwise inherited from C — let Z
f
⇒
g
Z ′ be morphisms; f ⇒ g if and only

if f and g have the same underlying monotone maps, and f is below g with
respect to these components in C.



Framed zigzag Pos-categories: example

𝑟 ′0 𝑠′0 𝑟 ′1 𝑠′1 𝑟 ′2

𝑟0 𝑠0 𝑟1

𝑓 ′0

𝑖 𝑗

𝑏′
0 𝑓 ′1 𝑏′

1

𝑘
𝑙 𝑚

𝑓0

𝑔 𝑛

𝑏0



A suitably lax notion of colimit
In ordinary category theory, given a functor I F−→ C:

I cocones with tip c are defined by natural transformations F ⇒ ∆c ;

I the colimit is an object colim F of C with a universal cocone:

∀c ∈ C.C(colim F , c) ∼= Cocone(F , c) = [I, C](F ,∆c);

I if I has a terminal object 1, this determines colim F = F (1).

In Pos-category theory, given a Pos-functor I F−→ C:

I oplax cocones with tip c are defined by lax natural transformations F ⇒ ∆c ;
I the oplax (conical) colimit is an object oplax colim F of C with a universal oplax

cocone:

∀c ∈ C.C(oplax colim F , c) ∼= OplaxCocone(F , c) = Lax[I, C](F ,∆c);

I if I has a terminal object 1, this may not determine an oplax conical colimit.
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Oplax conical colimits are pathological

Let D be the Pos-category generated by:

𝑥 𝑦;
𝑓

𝑔

and F and F ′ given respectively by diagrams:

x x = x .

F has both an oplax conical colimit and a conical colimit, given by the identity cocone
with tip x and leg given by idx .



Oplax conical colimits are pathological (contd.)

However, the identity cocone over F ′ is not an oplax conical colimit: the oplax cocone

𝑥 𝑥

𝑦
𝑓 𝑔

exists; if the identity cocone were universal, then this oplax cocone would factor through
it, which is tantamount to requiring a morphism x → y which is simultaneously equal to
f and g, which does not exist.



Weakening to quasi colimits

Consider the universal properties:

I colimits in (Set-enriched) categories

∀c ∈ C.C(colim F , c) ∼= Cocone(F , c);

I oplax conical colimits in Pos-enriched categories

∀c ∈ C.C(oplax colim F , c) ∼= OplaxCocone(F , c).

Sets are either isomorphic or not, but posets admit weaker notions of ‘isomorphism’:
(monotone) Galois connections.

Idea: replace the order isomorphism with an adjunction of posets.

These are oplax quasi colimits.
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Quasi (co)limits
Consider the map

C(oplax qcolim F , c) −◦ι−−→ OplaxCocone(F , c),

− ◦ ι may be:
I right or left adjoint;
I right or left inverse.

All four classes are different types of oplax quasi colimits.

Right-adjoint-right-inverse (rari) oplax colimits capture when − ◦ ι is injective, but not
necessarily surjective.

Example: a right-adjoint terminal object 1 in a Pos-category C is an object such that

∀c ∈ C.C(c, 1) admits a minimal element.

Theorem: an oplax rari colimit exists when the diagram index admits a right-adjoint quasi
terminal object.
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Topos of reflexive directed graphs

Let Q denote the category generated by

𝑉 𝐸,
𝑠

𝑡

𝑟

where r is a common retract of s and s, i.e. r ◦ s = idV = r ◦ t .

The topos of reflexive directed graphs is the category of presheaves (functors Qop → Set):

Graph := Q̂.



Presheaf topos of W -weighted graphs I

A graph weighting W is a collection of vertex weights Wv , and edge weights We , such that
edge labels have both a source and target vertex label associated to them, and vertex
labels have an associated self-loop edge label.

We write f : a → b ∈ We to denote that the edge label f has source vertex label a ∈ Wv

and target vertex label b ∈ Wv , and ra ∈ We to denote the distinguished self-loop edge
label associated to the vertex label a ∈ Wv .



Presheaf topos of W -weighted graphs II

Let Cop X−→ Set be a presheaf in Ĉ. There is an equivalence of categories

Ĉ/X ∼= ˆ∫ X ,

where
∫
X denotes the category of elements of X .



Presheaf topos of W -weighted graphs III

Let Qop W−→ Set be a graph weighting, presented as a reflexive directed graph.∫
W is the category with

objects I a, b, c, . . . ∈ Wv for each vertex weight;
I α, β, γ, . . . , ra, rb, rc , . . . ∈ We for each edge weight;

morphisms I a ‘typed source’ morphism a sα−→ α whenever α : a → b for any b;
I a ‘typed target’ morphism b tα−→ α whenever α : a → b for any a;
I a ‘typed reflexive’ morphism ra

ra−→ a for any a.



Homotopy theory of W -weighted graphs I

Graph homomorphisms G → H correspond to global elements of HG , i.e. morphisms
W → HG .

For G
f
⇒
g
H, homotopy f

h' g should be a ‘path’ In → HG from f to g for some n ∈ N.

By currying, this is equivalently a graph homomorphism G × In → H.
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By currying, this is equivalently a graph homomorphism G × In → H.



Homotopy theory of W -weighted graphs II

Let G
f
⇒
g
H be two parallel homomorphisms between W -weighted reflexive directed

graphs.

An n-step homotopy G × In
h−→ H from f to g is a W -weighted reflexive directed graph

homomorphism, for some In ∈ In , such that

∀w ∈ Wv .∀v ∈ Gw .h(v ,w0) = f (v),

h(v ,wn) = g(v),

∀w ∈ We.∀e ∈ Ge.h(e,w0) = f (e),

h(e,wn) = g(e),

where wi represents the weight vertex/edge of the ith copy of w in In .

We say that f and g are homotopic, and write f
h' g, if there exists an n-step homotopy h

between them some n ∈ N.



The stiff representative graph

Through this homotopy theory, have a notion of strong deformation retract.

Strong deformation retracts are captured by foldings: G → G \ {v} when

I there is a vertex u dominating v — the set of edge weights for which there exists an
edge x → v is a subset of those for which there exists an edge x → u, and similarly
for v → x ;

I there is a degenerate edge u → v or u ← v .

A graph which cannot be folded is stiff; the stiff graph associated to any graph is unique
up to isomorphism.

An object in a framed zigzag category represents an n-dimensional diagram when its stiff
representative is isomorphic to one built from its signature.
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Thanks for listening!
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