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ABSTRACT
The theory of associative 𝑛-categories has been employed to give

a combinatorial model of directed higher categories amenable to

computer implementation, presented as 𝑛-dimensional string dia-

grams. However, the theory lacks a notion of inverse, which would

require the existence of cancellation moves along with an infinite

collection of higher-dimensional coherence data.

We generalise the theory to support invertibility by equipping

generators with ‘framing’ data, allowing for a natural representa-

tion of the inverse. Using this ‘framed zigzags’ approach, we show

that the required cancellation moves and coherence data arise uni-

formly via a colimit mechanism. We use tools from enriched cat-

egory theory to justify correctness of our constructions, and exhibit

a proof assistant which implements our theory.

CCS CONCEPTS
• Theory of computation→ Categorical semantics; Rewrite
systems; Automated reasoning; •Mathematics of computing→
Algebraic topology.
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1 INTRODUCTION
Coherent equivalences. In a category, a morphism 𝑓 : 𝑥 → 𝑦

is invertible if it admits an inverse 𝑓 −1 : 𝑦 → 𝑥 , such that the

composition in either order is the identity morphism:

𝑓 −1 ◦ 𝑓 = id𝑥 , 𝑓 ◦ 𝑓 −1 = id𝑦 .

In this case, we say that 𝑓 and 𝑓 −1 are an inverse pair, witnessing the
isomorphism 𝑥 � 𝑦. In a higher category, this structure naturally

generalises to that of an equivalence, where the equalities above
are replaced by directed 2-cells that perform pair cancellations or

introductions:

𝑓 −1 ◦ 𝑓 ⇒ id𝑥 , 𝑓 ◦ 𝑓 −1 ⇒ id𝑦,

𝑓 −1 ◦ 𝑓 ⇐ id𝑥 , 𝑓 ◦ 𝑓 −1 ⇐ id𝑦 .

We may require these 2-cells to themselves form equivalences as

inverse pairs. This yields a coinductive definition of equivalence,

which generates structure in all dimensions [18].
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The resulting notion of equivalence has poor algebraic properties.

To see why, consider the following 2-cell, obtained as a composite

of the 2-cells described above:

𝑓 = id𝑦 ◦ 𝑓 ⇒ (𝑓 ◦ 𝑓 −1) ◦ 𝑓 = 𝑓 ◦ (𝑓 −1 ◦ 𝑓 ) ⇒ 𝑓 ◦ id𝑥 = 𝑓 .

Here we underline the redex applying in each case, and assume for

simplicity our theory is definitionally unital and associative. This

2-cell is called the snake composite, and has type 𝑓 ⇒ 𝑓 . We might

expect it to be equivalent to id𝑓 ; this must certainly be the case if we

desire the free∞-category generated by an equivalence 𝑓 : 𝑥 → 𝑦

to itself be equivalent to the free∞-category generated by a single

object, where parallel morphisms are always equivalent. However,

under the coinductive definition of equivalence presented before,

this will not be the case; we say that this notion of equivalence is

incoherent.
For a coherent theory of equivalences, the snake composite must

therefore be equivalent to the identity (via a coherent equivalence).

But this is not the end of the story: there is an infinite sequence

of such phenomena, known as catastrophes [6] from their study

in manifold theory, with one qualitatively new example arising in

each dimension
1
. Any computer algebra system for higher categor-

ies must have a solution to this problem in order to implement a

satisfactory theory of equivalences.

String diagrams. This paper presents a solution to the problem

of equivalences for the theory of string diagrams. We work with the

formalism of associative 𝑛-categories [8], which has been developed

into a proof assistant homotopy.io [17, 9, 22]. This proof assistant
encodes string diagrams combinatorially using a simple inductive

structure called a zigzag. This proof assistant allows the construc-
tion of composite higher morphisms in a finitely-generated higher

category, using a geometrical string diagram interface. Given the

difficulty of encoding coherent equivalences as discussed above, all

the generators of the theory are directed.

The main technique for introducing nontrivial structure in the

proof assistant is contraction, which uses a colimit operation to sim-

plify some part of a diagram [17]. The simplest nontrivial example

looks like Figure 1, where we collapse a diagram in which two 2-

cells are composed at different heights. This contraction procedure

can be applied both in the top dimension as demonstrated here, and

also recursively within subdiagrams, to allow the construction of

complex proofs.

In this article, we show how the contraction technology can

be modified to allow the definition of invertible generators and

manipulation of coherent inverses. As a result, the proof assistant

homotopy.io gains the ability to work with these, and hence be-

comes a language for finitely-presented higher groupoids. This new

capability will be enabled by introduction of framing information
at the level of zigzags.

1
The first few have enigmatic names: the snake, swallowtail, butterfly and wigwam.
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;
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;

Figure 1: Contraction example

To understand this, we consider a 1-cell 𝑒 : 𝑥 → 𝑥 . In the zigzag

formalism, this is encoded combinatorially as the following cospan:

𝑥 → 𝑒 ← 𝑥 .

Suppose we would like 𝑒 to be invertible. Then how can we encode

𝑒−1? One approach may be to introduce ‘𝑒−1’ as a formal token,

and allow the following zigzag to represent the inverse 1-cell:

𝑥 → 𝑒−1 ← 𝑥 .

However, this is unsatisfactory: we know that an infinite sequence

of higher morphisms will be required to ensure the inverse is coher-

ent — including the snake and its associated higher catastrophes —

but their structure is chaotic, and we do not know of a good way

to introduce a corresponding syntax of higher tokens.

Our solution is to introduce for each arrow 𝑥 → 𝑒 a framing
label, as a decoration on the arrow. This allows us to distinguish 𝑒

and 𝑒−1 as follows:

𝑥
1−→ 𝑒

2←− 𝑥 𝑥
2−→ 𝑒

1←− 𝑥

The labels 1 and 2 are formal tokens to distinguish the framings;

the choice of label does not have any special meaning. We call

this extended structure a framed zigzag. This has the attractive

property that the framed zigzag representations of 𝑒 and 𝑒−1 are
mirror-images.

Using this idea, we consider applying the contraction principle

to the composite 𝑒 ◦𝑒−1. Contraction is computed by colimit, which

is easily computed over our base category with objects {𝑥, 𝑒} and
morphisms 𝑥

1−→ 𝑒 and 𝑥
2−→ 𝑒 . We obtain the following result:

x

x e x

x e y e x

1

1 1

1

1

2 2

2

1

1

We observe that the contraction procedure performs the cancel-

lation of 𝑒 with 𝑒−1 as intended. Above, we append two triangles

which close off the geometry, yielding an upper boundary labelled

by 𝑥 . Overall this is the correct geometrical representation of the

cancellation move 𝑒 ◦ 𝑒−1 ⇒ id𝑥 , depicted in string diagrams on

the right.

Posetal enrichment. We extend the same principle to generat-

ors of higher dimension. For example, a 2-cell 𝑓 : 𝑒 ⇒ 𝑒 would

be represented as follows, where we give both the framed zigzag

representation as well as the geometrical rendering produced by

the proof assistant:

x f x

x e x

x f x

1

6 7

2

8

9 10

1

3 4

2

5

Here we see a further new aspect of our construction: where a

triangle appears in the neighbourhood of a generator, we give it

a 2-cell filler. This 2-cell structure will be posetal, and so we can

handle it with the technology of Pos-enriched 1-categories. For any
2-cell generator, its neighbourhood structure is therefore encoded

by a particular choice of finite Pos-enriched category.

As the dimension goes up, this Pos-enriched 1-categorical frame-

work remains constant. Therefore, even for an 𝑛-dimensional gen-

erator 𝑋 where 𝑛 > 2, its neighbourhood is completely defined by a

choice of Pos-category, and the same will be true for all composite

geometries. In this way we are able to encode higher categorical dia-

grams of arbitrary dimension, with a formal foundation that stays

at the level of Pos-categories. Geometrically, this suggests our geo-

metries are encoded by 2-coskeletal simplicial sets. Precedent for

this comes from the work of Nanda [15], who uses Pos-categories as
a rich setting for developing discrete Morse theory in a categorical

setting. As a consequence of this Pos-enrichment, contraction must

now be handled with oplax conical colimits.

Implementation. These ideas have been implemented, and are

available in a pre-release version of the proof assistant homotopy.io,
available at the location https://beta.homotopy.io. Here, a generator

can be given invertible structure via its settings dialog, accessed by

clicking the cog icon.

To demonstrate the application of invertible generators, we il-

lustrate in Appendix A a proof of the following result, along with a

link to a video representing the proof as a smooth movie of 3-di-

mensional structures [12].

Theorem 1.1. In the higher category generated by an object 𝑥
and a 2-cell 𝑓 : id𝑥 ⇒ id𝑥 , the following ‘Figure-8’ string diagrams
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represent equivalent 3-cells:

≃

The Figure-8 diagrams are themselves composites of the invert-

ible structure, along with a braiding move. This result plays an

important role in the homotopy groups of spheres, as follows. The

free higher groupoid on an object 𝑥 and a 2-cell 𝑓 : id𝑥 → id𝑥

generates the homotopy type of the 2-sphere, and the homotopy

classes of 3-cells in any given hom-set are in bijection with the

elements of the homotopy group 𝜋3 (𝑆2). Naively it appears there

are four such Figure-8 diagrams, coming in two inverse pairs, and

therefore we might expect 2 independent homotopy generators in

this class, yielding 𝜋3 (𝑆2) ≃ Z2. However, due to the non-obvious

equivalence established in the theorem, in fact these generators are

homotopy equivalent, and hence 𝜋3 (𝑆2) ≃ Z.
It is in this sense that our tool, homotopy.io, is described as

a proof assistant, facilitating the formalisation and study of these

theories.

1.1 Related work
This work is part of a larger programme to develop a proof as-

sistant for higher category theory in the model of associative 𝑛-

categories [8], homotopy.io.In particular, it builds on the zigzag

construction and contraction operation described in Reutter and

Vicary [17]. Other important constructions in the tool are given by

Heidemann et al. [9], Sarti and Vicary [20] and Tataru and Vicary

[22].

The predecessor tool Globular [1] directly encoded the axioms

of a quasistrict globular 4-category, and as such is fundamentally

limited to dimension 4. It included an incoherent notion of inverse,

with the coinductive structure of cancellations, but without the

snake equation and higher coherence moves.

Existing type-theoretic models of higher groupoids [3, 4], includ-

ing homotopy type theory [23], handle invertible structures in a

coherent way. The proof assistant CaTT [2] can handle both dir-

ected and coherent undirected inverses, although that point is not

made very clearly in the literature. The novelty of our approach is

to use new techniques that extend support of invertible generators

to a geometrical string-diagram setting.

1.2 Outline
The outline of our contribution is as follows. Section 2 introduces

the necessary background on enriched categories, and in particu-

lar Pos-categories in detail, which are categories enriched in the

category of posets and monotone maps. Section 3 introduces the

notion of framed zigzags, which are a generalisation of the zigzags

of Reutter and Vicary [17] modelling associative 𝑛-categories to

an appropriately enriched setting. Section 4 shows that framed

zigzags give rise to a notion of coherent invertibility in associative

𝑛-categories.

1.3 Notation
All (enriched) categories will be strict and small, which means that

their objects form a set and can be compared for equality. 𝑓 [𝑋 ]
denotes the application of a function 𝑓 to a subset 𝑋 of its domain

pointwise. ∆0 denotes the category of (possibly empty) finite linear

orders and monotone maps, also known as the augmented simplex

category. Δ𝑥 denotes the constant functor at 𝑥 .

2 ENRICHED CATEGORIES
We assume familiarity with basic enriched category theory, so

we will elide some of the details necessary for a fully-rigorous

presentation. The reader is referred to Kelly [14] and Riehl [19,

§3] for a detailed introduction to the general theory. Familiarity

with monoidal category theory or higher category theory will also

be helpful, but we will not cover it here. Nonetheless, we begin

this section with a review of the main concepts used in the theory

of categories enriched in a symmetric monoidal category V (V-

categories). For our purposes,V will always be cartesian closed,

and complete and cocomplete, which is a relatively simple fragment

of the general theory of enriched categories.

Definition 2.1 (V-category). AV-category C is a category en-

riched over V; it has a class of objects 𝑥 ∈ C, and, for any pair

of objects 𝑥 and 𝑦, an object C(𝑥,𝑦) of the categoryV . For every

object 𝑥 , there is a distinguished V-morphism id𝑥 : 1 → C(𝑥, 𝑥)
called the identity on 𝑥 . For any triple of objects 𝑥,𝑦, 𝑧, there is aV-

morphism ◦𝑥,𝑦,𝑧 : C(𝑦, 𝑧) × C(𝑥,𝑦) → C(𝑥, 𝑧) called composition.
Composition is associative and unital with respect to these identit-

ies, in the sense that the coherence diagrams expressing these must

commute.

Definition 2.2 (V-functor). A V-functor 𝐹 : C → D between

V-categories is given by a mapping of objects 𝑥 ∈ C to 𝐹𝑥 ∈ D,

together with V-morphisms 𝐹𝑥,𝑦 : C(𝑥,𝑦) → D(𝐹𝑥, 𝐹𝑦) which
preserve identities and compositions in the sense of Definition 2.1.

Example 2.3 (V = Set). Enriching in the category of sets and

functions,V-categories are ordinary (locally small) categories.

Example 2.4 (V = Vect). Enriching in the category of vector

spaces and linear maps,V-categories are linear categories.

Example 2.5 (V = Ab). Enriching in the category of abelian

groups and group homomorphisms,V-categories are preadditive

categories. Preadditive categories generalise rings in the same way

that ordinary categories generalise monoids: every one-object pre-

additive category is precisely the data of a ring (with identities).

Example 2.6 (V = Bool). Enriching in the category determined

by the poset ⊥ → ⊤,V-categories are preorders.

Example 2.7 (V = Cat). Enriching in the category of (small)

categories and functors,V-categories are 2-categories. These are

the natural setting for ‘2-dimensional category theory’, general-

ising ordinary category theory; in addition to having objects and

morphisms, there are also 2-cells between parallel morphisms. A

modern reference is Johnson and Yau [13].

Lemma 2.8. There is a category V-Cat whose objects are V-
categories and morphisms areV-functors.

3
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Lemma 2.9 (Change of enriching base [19, Lemma 3.4.3]).

Given a lax monoidal functor 𝐹 : V → W and a V-category C,
there is aW-category 𝐹∗C with the same objects as C, with Hom
objects given by

𝐹∗C(𝑥,𝑦) B 𝐹C(𝑥,𝑦).

Definition 2.10 (Underlying category). The underlying category
of aV-category C is the category C0 with the same objects as C,
and Hom sets given by

C0 (𝑥,𝑦) B V(1, C(𝑥,𝑦)).

This is equivalent to base change along the functorV(1,−) : V →
Set.

2.1 Pos-categories
Our most important instance isV = Pos, so we will spend some

time explicating what constitutes a Pos-category2.

Definition 2.11 (Pos-category). A Pos-category is a category en-

riched over Pos, the category of posets and monotone maps.

Explicitly, this means that if C is a Pos-category, then C has the

structure of a category, and additionally for each pair of objects

𝑥,𝑦 ∈ C, the Hom C(𝑥,𝑦) is partially ordered, and composition

must respect this partial ordering: if 𝑓 ≤ 𝑓 ′ ∈ C(𝑥,𝑦), and 𝑔 ≤
𝑔′ ∈ C(𝑦, 𝑧), then in C(𝑥, 𝑧), 𝑔 ◦ 𝑓 ≤ 𝑔′ ◦ 𝑓 ′, and similarly for

precomposition also.

One can understand this concept by analogy with 2-categories:

posets are trivial kinds of categories (one in which every Hom set

is thin), so enrichment in these yields a simplified notion of higher

category, sitting somewhere between the theory of categories and

the theory of 2-categories — a Pos-category is roughly a 2-category
where all the 2-cell structure is thin

3
, and the specification of mono-

tonicity conditions with respect to Hom posets is equivalently given

by 2-cell filler structure and its preservation. Because of this, we can

apply known results from 2-category theory to Pos-categories in a

simplified form. Pos-categories are a middle ground allowing for

the development of some ideas which are 2-categorical in nature,

but in a simplified setting which mostly has the flavour of ordinary

category theory with some additional monotonicity conditions in

some places.

Another intuition for Pos-categories is that they are informally

the minimum amount of structure on top of a category necessary to

have a sensible notion of op/laxly commutative diagram: a diagram

in which some of the 2D faces do not represent equality between

morphisms, but rather an ordering relation. In particular, this allows

for the richer notion of oplax conical colimits, which we will make

use of heavily in the following sections.

It is for these reasons that we use the symbol⇒ for the partial

order relation on Hom posets in a Pos-category from here onwards,

and describe the witnesses to an ordering 𝑓 ⇒ 𝑔 in a Hom poset as

a 2-cell filler.

Definition 2.12 (Pos-functor). A Pos-functor is amapping between

Pos-categories; for 𝐹 : C → D, each object 𝑥 ∈ C is mapped

to 𝐹𝑥 ∈ D, and for each 𝑥,𝑦 ∈ C there is a monotone map

2
Some authors call these 2-posets; our choice in terminology emphasises our focus on

the theory of enriched categories.

3
We call these 2-cell fillers.

C(𝑥,𝑦) → D(𝐹𝑥, 𝐹𝑦) which preserves identity and composition.

That is, 𝐹 (id𝑥 ) = id𝐹𝑥 , and 𝐹 (𝑔 ◦ 𝑓 ) = 𝐹 (𝑔) ◦ 𝐹 (𝑓 ).

Lemma 2.13. There is a category Pos-Cat whose objects are Pos-
categories and morphisms are Pos-functors.

Lemma 2.14. There is an adjunction of categories between Cat and
Pos-Cat.

Proof. Every Pos-category C has an underlying category C0,
which has the same objects, and each Hom set C0 (𝑥,𝑦) given by

Pos (1, C(𝑥,𝑦)), where 1 is the trivial one-element poset. The mono-

tone maps from the singleton to C(𝑥,𝑦) are in bijection with the

elements of C(𝑥,𝑦), so we can think of the category C0 as merely

C and forgetting that each Hom has a partial order.

Moreover, the functor Pos(1,−) : Pos→ Set admits a left adjoint,

which is the functor which equips a set with the trivial partial order,

where all elements are pairwise incomparable. This means that

every category can be considered as a Pos-category, by equipping

each Hom set with the trivial partial order, and every functor can

be considered as a Pos-functor between Pos-categories obtained
this way which is vacuously monotone (the action on 2-cell fillers

is trivial). □

Corollary 2.15 (∆ Pos-category). There is a Pos-category ∆
of finite linear orders and monotone maps, with trivial 2-cell fillers
given by 𝑓 ⇒ 𝑔 exactly when 𝑓 = 𝑔.

We have an important special case of Pos-categories which we

will make use of in the algorithmic sections of the paper.

Definition 2.16 (𝑖𝑑-max Pos-category). A Pos-category C is 𝑖𝑑-
max when for each 𝑐 ∈ C, id𝑐 is the top element of the poset

C(𝑐, 𝑐).

2.2 Completions of posets
Definition 2.17 (Meet). A poset 𝑃 has meets if for every subset

𝑄 ⊆ 𝑃 , there is a greatest lower bound of 𝑄 ,
∧
𝑄 ∈ 𝑃 . Explicitly,∧

𝑄 has the following properties:

• ∀𝑞 ∈ 𝑄.
∧
𝑄 ≤ 𝑞,

• for 𝑝 ∈ 𝑃 , if ∀𝑞 ∈ 𝑄.𝑝 ≤ 𝑞, then 𝑝 ≤ ∧
𝑄 .

In this case we say that 𝑃 is a meet-semilattice.

Dually, a poset 𝑃 has joins if for every subset 𝑄 ⊆ 𝑃 , there is a

least upper bound of 𝑄 ,
∨
𝑄 ∈ 𝑃 .

Definition 2.18 (
∧

-Lat). The category
∧

-Lat is the category of

meet-semilattices and meet-semilattice homomorphisms. That is,

its objects are posets which have all meets, and morphisms are

monotone maps preserving them.

Lemma 2.19.

∧
-Lat is a cartesian closed subcategory of Pos.

Proof. The set 1 B {∗} with the trivial ordering is the terminal

object of

∧
-Lat: it is a meet-semilattice, with every meet given by

∗, and for any other poset 𝑃 the unique map 𝑃 → {∗} is trivially
monotone and meet-preserving. 𝑃 ×𝑄 is a meet-semilattice if and

only if 𝑃 and𝑄 are, and this gives the categorical product in

∧
-Lat.
□

4
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Definition 2.20 (Free join-completion). The free join-completion

of a poset 𝑃 , 𝐹 (𝑃), is the poset of downwards-closed subsets of 𝑃 ,

ordered by inclusion. The join of a set of downwards-closed subsets

of 𝑃 , 𝑋 , is given by

∨
𝑋 B

⋃
𝑋 .

Lemma 2.21. 𝐹 (𝑃) also has all meets.

Proof. 𝐹 (𝑃) is a join-semilattice. The Bool-enriched adjoint

functor theorem says that every join-semilattice is also a meet-

semilattice. Meets in 𝐹 (𝑃) are given by intersections of downwards-

closed subsets. □

Lemma 2.22. There is a monotone map ↓ (−) : 𝑃 → 𝐹 (𝑃), sending
each element 𝑝 ∈ 𝑃 to the principal downwards-closed subset ↓ 𝑝 B
{𝑞 ∈ 𝑃 | 𝑞 ≤ 𝑝}. Moreover, this map preserves and reflects meets in 𝑃 .

Proof. This is the Bool-enriched version of the fact that the

Yoneda embedding sends a category to its free cocompletion, which

is presheaf topos, in a way which preserves and reflects limits.

Posets are skeletalBool-categories, monotonemaps areBool-functors,
and meets and joins are Bool-enriched limits and colimits respect-

ively. 𝐹 (𝑃) is the Bool-enriched presheaf topos associated to the

Bool-category 𝑃 , and it has all meets and joins analogously to how

presheaf topoi have all limits and colimits. □

Lemma 2.23. 𝐹 extends to a functor 𝐹 : Pos→ ∧
-Lat which sends

monotone maps to meet-semilattice homomorphisms.

Proof. The action of taking Bool-presheaves is functorial: each
monotone map 𝑓 : 𝑃 → 𝑄 induces a monotone map 𝑓 ∗ : 𝐹 (𝑄) →
𝐹 (𝑃) by precomposition. In this instance, we have an adjoint triple

𝑓! ⊣ 𝑓 ∗ ⊣ 𝑓∗ in the Bool-enriched sense. 𝑓∗, as a right adjoint,

preserves Bool-enriched limits (i.e. meets), and is given explicitly

as

𝑓∗ (𝑋 ) B
⋂
{↓ 𝑓 (𝑥) : 𝑥 ∈ 𝑋 } ,

for a downwards-closed subset 𝑋 ⊆ 𝑃 . So define 𝐹 𝑓 B 𝑓∗. □

Remark 1. This is in contrast to the usual free-forgetful adjunction

between posets and join-semilattices, which would send 𝑓 to 𝑓!
given by union instead of intersection.

Proposition 2.24. 𝐹 is a lax monoidal functor.

Proof. We need

(1) a meet-preserving monotone map {∗} → 𝐹 ({∗}), which is

given by ↓ ∗;
(2) a meet-preserving monotone map 𝐹 (𝑃) × 𝐹 (𝑄) → 𝐹 (𝑃 ×𝑄),

which is given by

(𝑋 ⊆ 𝑃,𝑌 ⊆ 𝑄) ↦→ 𝑋 × 𝑌 .
The necessary coherence conditions are easy to check. □

Corollary 2.25. Every Pos-category C gives rise to a
∧

-Lat-
category 𝐹∗ (C) in which every Hom poset has all meets, via base
change along 𝐹 .

Lemma 2.22 says that 𝐹∗ (C) is like a ‘completion’ of C which

has formally added all meets to each Hom poset, preserving and

reflecting any that already existed. The forgetful functor

∧
-Lat→

Pos also induces a base change, which allows us to treat any
∧

-Lat-
category as a Pos-category. This will be useful later to define an

enriched category of framed zigzags.

Corollary 2.26. If the Pos-category C is 𝑖𝑑-max, then so is the∧
-Lat-category 𝐹∗C.

Proof. The meet of an empty set is the top element, and 𝐹∗
preserves meets in Hom posets. □

2.3 Oplax conical colimits
We now make use of this higher structure to define oplax conical

colimits, which are a generalisation of colimits.

Throughout this section, let 𝐹,𝐺 : C⇒D be a Pos-functors.

Definition 2.27 (Lax natural transformation). A lax natural trans-
formation 𝛼 : 𝐹 ⇒ 𝐺 is

• a family of D-morphisms 𝛼𝑥 : 𝐹𝑥 → 𝐺𝑥 for each 𝑥 ∈ C,
• for each morphism 𝑓 : 𝑥 → 𝑦 in C, a 2-cell filler 𝐺𝑓 ◦ 𝛼𝑥 ⇒
𝛼𝑦 ◦ 𝐹 𝑓 in D:

Fx Fy

Gx Gy

Ff

αx αy

Gf

Definition 2.28 (Oplax cocone). An oplax cocone over some𝑑 ∈ D
is a lax natural transformation 𝛼 : 𝐹 ⇒ Δ𝑑 . That is, a family of D-

morphisms 𝛼𝑥 : 𝐹𝑥 → 𝑑 such that for each morphism 𝑓 : 𝑥 → 𝑦 in

C, there is a 2-cell filler 𝛼𝑥 ⇒ 𝛼𝑦 ◦ 𝐹 𝑓 :

Fx Fy

d

Ff

αx αy

Oplax cocones over a diagram 𝐹 with a fixed tip 𝑑 are partially-

ordered pointwise, and form a poset OplaxCocone(𝐹, 𝑑).

Definition 2.29 (Oplax conical colimit). The oplax conical colimit

of 𝐹 , (𝑑, 𝜄 : 𝐹 ⇒ Δ𝑑 ), is a universal oplax cocone: for any other

oplax cocone 𝛼 : 𝐹 ⇒ Δ𝑑 ′ , there is a unique morphism 𝑢 : 𝑑 → 𝑑′

such that the following commutes in D:

d′

Fx dιx

αx
u

Also, for any other oplax cocone with the same tip, 𝛼 ′ : 𝐹 ⇒ Δ𝑑 ′ ,
which factors through 𝑑 via 𝑢′ : 𝑑′ → 𝑑 , as above, such that for all

𝑥 in C, 𝛼 ′𝑥 ⇒ 𝛼𝑥 , it must be the case that 𝑢′ ⇒ 𝑢 and vice versa. In

other words, the universal property of the oplax conical colimit is

equivalently expressed as a natural order isomorphism of posets:

D(oplax colim 𝐹, 𝑑′) � OplaxCocone(𝐹, 𝑑′) .
We denote the oplax conical colimit 𝑑 of 𝐹 by oplax colim 𝐹 .

Remark 2. In the case that all oplax cocones are cocones, for ex-

ample when the Pos-category D admits only trivial 2-cell fillers,

oplax conical colimit coincides with conical colimit.

Definition 2.30 (Local oplax cocone). A local oplax cocone for 𝐹
is an oplax cocone 𝛼 with tip 𝐹𝑐 for some 𝑐 ∈ C, where each

component 𝛼𝑥 is given by 𝐹 𝑓 for some C-morphism 𝑓 .

5
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These form a subposet

OplaxCocone𝐹 (𝐹, 𝐹𝑐) ⊆ OplaxCocone(𝐹, 𝐹𝑐).

This notion is helpful to resolve some of the pathologies that

oplax conical colimits admit in comparison to colimits in ordinary

category theory (see Appendix B).

Proposition 2.31. Let (𝐹𝑥, 𝜆) be a local oplax cocone of 𝐹 , and
additionally suppose that

(1) D is 𝑖𝑑-max;
(2) for 𝑐 ∈ C, D(𝐹𝑥, 𝐹𝑐) ≠ ∅ ⇐⇒ 𝐹𝑐 = 𝐹𝑥 .

Then (𝐹𝑥, 𝜆) is the unique local oplax cocone, and also it is maximal
in OplaxCocone(𝐹, 𝐹𝑥).

Proof. Let (𝐹𝑥, 𝛼) be an oplax cocone over 𝐹 . Because 𝜆𝑐 = 𝐹 𝑓

for some C-morphism 𝑓 : 𝑐 → 𝑥 , by virtue of 𝛼 being an oplax

cocone, obtain a 2-cell filler 𝛼𝑐 ⇒ 𝛼𝑥 ◦ 𝜆𝑐 . As D is 𝑖𝑑-max, 𝛼𝑥 ⇒
id𝐹𝑥 , so 𝛼𝑐 ⇒ 𝜆𝑐 . Hence, 𝜆 is maximal.

Any local oplax cocone over 𝐹 must have tip 𝐹𝑥 , or else there is

no component for 𝑥 . Let (𝐹𝑥, 𝜆′) be another local oplax cocone. Any
local oplax cocone is an oplax cocone, so deduce that 𝜆′ ≤ 𝜆. But

the argument works in reverse because 𝜆′ is a local oplax cocone,
so 𝜆 ≤ 𝜆′, and hence 𝜆 = 𝜆′. □

2.4 Computing colimits by collapse
In ordinary category theory, when calculating the colimit of some

functor, there is a case when the colimit is easily computable from

just the data of the diagram.

Lemma 2.32. Given a diagram 𝐹 : 𝐽 → C where 𝐽 has a terminal
object 𝑥 , then 𝐹 has a colimit given by 𝐹𝑥 , with legs of the colimit
arising as images of the unique 𝐽 -morphisms 𝑗 → 𝑥 for each 𝑗 ∈ 𝐽 .

The abstract justification for this is that the functor 𝑥 : 1 → 𝐽

which chooses 𝑥 is final, as below, and moreover can be obtained

structurally by categorical machinery.

Definition 2.33 (Final functor). A functor𝐺 : 𝐼 → 𝐽 is final if for

all functors 𝐹 : 𝐽 → C, the colimit of 𝐹𝐺 exists whenever the colimit

of 𝐹 does, and the canonical C-morphism colim 𝐹𝐺 → colim 𝐹 is

an isomorphism.

Example 2.34. The inclusion

• ← • → • ↩→ • → • ← • → • ← •

is a final functor. This symbolises that when a pushout diagram has

‘extra legs’, the overall colimit is unaffected.

Final functors are an important tool for computing colimits,

representing when a colimit computation over some diagram can be

replaced by a (usually simpler) colimit computation over a different

diagram by restriction along that functor, and in this section we

develop an analogue for oplax conical colimits in a Pos-category.
For ordinary categories, it is clear that whenever some diagram

contains an identity morphism 𝑥 = 𝑥 , then the colimit computation

can be simplified by replacing that diagram with a smaller one

containing only one 𝑥 . This is not true in the case of oplax conical

colimits in Pos-categories, as the following example shows.

Example 2.35. LetC be the Pos-category determined byC(𝑥,𝑦) B
{𝑓 ⇒ ℎ ⇐ 𝑔}, and consider two diagrams𝐺 : 𝐼 → C and 𝐹 : 𝐽 → C,
given below:

a x

b c x y u v x y.

d x

f

h
h

g

f

g

F G

It may appear that 𝐹 and𝐺 are essentially the same diagram, given

the identity morphisms in the image of 𝐹 , and one might expect

them to have equivalent oplax conical colimits. However, while 𝐺

admits an oplax conical colimit (𝑦, 𝜄), with 𝜄𝑎 = 𝑓 , 𝜄𝑏 = ℎ, 𝜄𝑐 = id𝑦 ,

and 𝜄𝑑 = 𝑔, the diagram 𝐹 does not even admit any oplax cocones.

Such an oplax cocone would necessarily consist of a choice of a

single morphism below all others in C(𝑥,𝑦), which does not exist.

The issue is that the presence of non-trivial 2-cell fillers obstruct

the ability to remove identity morphisms in the image of 𝐺 .

Definition 2.36 (Collapse). Given some diagram of Pos-categories,
𝐷 : 𝐽 → C, define the sub-Pos-category 𝑄𝐷 ↩→ 𝐽 × 𝐽 to have

objects pairs ( 𝑗0, 𝑗1) such that

𝐷 𝑗0 = 𝐷 𝑗1, (1)⋃
𝑗∈ 𝐽 𝐷 𝑗, 𝑗0 [𝐽 ( 𝑗, 𝑗0)] =

⋃
𝑗∈ 𝐽 𝐷 𝑗, 𝑗1 [𝐽 ( 𝑗, 𝑗1)], (2)⋃

𝑗∈ 𝐽 𝐷 𝑗0, 𝑗 [𝐽 ( 𝑗0, 𝑗)] =
⋃

𝑗∈ 𝐽 𝐷 𝑗1, 𝑗 [𝐽 ( 𝑗1, 𝑗)]; (3)

morphisms 𝑓0× 𝑓1 → ( 𝑗0, 𝑗1) → ( 𝑗 ′
0
, 𝑗 ′
1
) such that 𝐷𝑓0 = 𝐷𝑓1;

2-cell fillers 𝛼 : (𝑓0 × 𝑓1) ⇒ (𝑔0 × 𝑔1) such that 𝐷𝛼 is trivial.

The collapse of 𝐽 with respect to 𝐷 is the following Pos-coequaliser:

∇ (𝐽 ) B coeq(𝑄𝐷 ↩→ 𝐽 × 𝐽
𝜋1

⇒
𝜋2

𝐽 );

Its universal property ensures that there is a unique Pos-functor,
the collapse of 𝐷 , ∇ (𝐷):

QD J × J J ∇ (J)

C.

π0

π1 q

D
∇(D)

The indexing Pos-category ∇ (𝐽 ) is a quotient of 𝐽 under 𝐷 ,

identifying indistinguishable objects along identities in the image

of 𝐷 which are not in the neighbourhood of any non-trivial 2-cell

fillers; Equations (2) and (3) say that 𝑗0 and 𝑗1 are indistinguishable
if the sets of morphisms with 𝐷 𝑗0 and 𝐷 𝑗1 as the co/domain are

the same. In other words, no morphism in the image of 𝐷 is able to

distinguish between them by pre/postcomposition.

Proposition 2.37. Suppose that C is 𝑖𝑑-max. 𝐷 admits an oplax
conical colimit if and only if ∇ (𝐷) does.

Proof. Suppose that ∇ (𝐷) admits an oplax conical colimit; it

is clear to see that this induces an oplax conical colimit for 𝐷 by

duplicating legs.

Conversely, suppose that 𝐷 admits an oplax conical colimit (𝑐, 𝜄).
We will show that C being 𝑖𝑑-max ensures that every leg of 𝜄 at

𝑥 and 𝑦, for 𝑓 : 𝑥 → 𝑦 in 𝐽 identified in ∇ (𝐽 ), is equal. Firstly,
6
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𝐷𝑥 = 𝐷𝑦 and 𝐷𝑓 = id𝐷𝑥 , so 𝜄𝑥 and 𝜄𝑦 have the same type; as 𝐷𝑥

and 𝐷𝑦 are indistinguishable, we can obtain a valid oplax cocone

𝜄+𝑗 B

{
𝜄𝑦 if 𝑗 = 𝑥 ,

𝜄 𝑗 otherwise;

as 𝜄 is an oplax conical colimit, 𝜄+ factors through 𝜄 via some morph-

ism 𝑢+:
c

Dx c.

ι+x =ιy

ιx

u+

Because 𝜄 uniquely factors through itself via id𝑐 , and 𝜄 ≤ 𝜄+ point-
wise, it must be the case that id𝑐 ⇒ 𝑢+. However, C is 𝑖𝑑-max, so

deduce 𝑢+ = id𝑐 and therefore 𝜄𝑥 = 𝜄𝑦 . □

3 FRAMED ZIGZAG CONSTRUCTION
The iterated zigzag category Zig

𝑛
0
(C) represents the combinatorial

space of 𝑛-dimensional string diagrams which can be built from an

algebraic signature encoded by a category C. In this way, objects of

this category represent 𝑛-cells of the free globular 𝑛-category over

C. These are referred to as typed zigzag categories, with respect

to C, as opposed to untyped zigzag categories where C = 1. As
we are interested in making elements of a signature invertible, our

discussion is implicitly focused on typed zigzags.

In previous developments, C was a trivial kind of category,

namely a poset of generators ordered by dimension inclusions
4

[17, Definition 16], or even just the poset N of natural numbers [9].

Our key innovation is to extend C into Pos-category, which is not

thin, whereby its morphisms encode framings, capturing a much

richer notion of typing.

3.1 Framed zigzags and framed zigzag maps
We take the standard zigzag construction [17, §2] and extend it to

Pos-categories to define framed zigzags.

Definition 3.1 (Framed zigzag Pos-category). Let C be a Pos-
category such that everyHomposet is locally finitelymeet-complete,

with these meets preserved by composition.

The Pos-category Zig (C) is given by the following data:

objects framed zigzags — a C-labelled iterated cospan, i.e. ob-

jects and morphisms of C of the form 𝑟0 → 𝑠0 ← 𝑟1 →
. . . ← 𝑟𝑛 for 𝑛 ≥ 0 and 𝑟𝑖 , 𝑠𝑖 ∈ C — the tips of the cospans

(𝑠𝑖 ) are called singular levels, and the feet (𝑟𝑖 ) are called regu-
lar levels;

morphisms framed zigzag maps — a C-labelled monotone

map between singular levels, combined with a C-labelled
dual monotone map between regular levels

5
, such that there

exist 2-cell fillers which make the resulting diagram valid

in C;6

4
This easily refines to boundary inclusion.

5
Given by the equivalence ∆0 � ∆𝑜𝑝

= [24]. Informally, when two zigzags are drawn in

a planar fashion with a monotone map between singular levels, this induces a unique

way to draw arrows monotonically in the opposite direction between regular levels

and vice versa.

6
These 2-cell fillers induce ‘composite’ regular-to-singular C-morphism components

which only commute oplaxly. The mnemonic is that 2-cell fillers point from the short

path to the long path.

2-cell fillers given pointwise by the 2-cell fillers of C; i.e. for
two zigzag maps 𝑓 , 𝑔 : 𝑍⇒𝑍 ′, 𝑓 ⇒ 𝑔 exactly when the

underlying monotone maps of 𝑓 and 𝑔 are equal and each

C-morphism component of 𝑓 is below its corresponding

C-morphism labelling in 𝑔.

In preparation for the description of composition of framed zig-

zag maps, note that there are two observations from the standard

theory of zigzags which should continue to hold in our extension.

(1) Every zigzag category Zig
0
(C) is canonically equipped with

a projection 𝜋 : Zig
0
(C) → ∆0

7
, so Zig

0
(C) can naturally

be considered an object of Cat/∆0.

(2) There is an adjunction of Hom sets Cat/∆0 (𝐽 ,Zig
0
(C)) �

Cat(𝐸 (𝐽 ), C) — every diagram in a zigzag category Zig
0
(C)

indexed over 𝐽 is equivalently determined by a diagram in C
indexed over a larger category 𝐸 (𝐽 ) [17, Definition 23]: this

larger diagram is called the explosion of the smaller one, and

essentially consists of replacing every object in Zig
0
(C) (a

zigzag) with its corresponding C-labelled iterated cospan,

and each zigzag map with its underlying sequence of C-
labelled maps in components. An example of this, ignoring

2-cell fillers, is illustrated in Figure 2.

This suggests that composition should respect explosion of dia-

grams, and that composition in Zig (𝐶) should ultimately be given

in terms of composition in C.

Definition 3.2 (Composition of framed zigzag maps). For two com-

posable framed zigzag maps in Zig (C), 𝑝 : 𝑍 → 𝑍 ′, 𝑞 : 𝑍 ′ → 𝑍 ′′,
their composite framed zigzag map 𝑞 ◦ 𝑝 : 𝑍 → 𝑍 ′′ is given by the

following procedure:

(1) 𝑞 ◦ 𝑝 determines a planar diagram in C by explosion, where

the vertical morphisms below (resp. above) are theC-morphism

components of 𝑝 (resp. 𝑞). An example of this is given in

Figure 2.

(2) The underlying singular monotone maps of 𝑝 and 𝑞 determ-

ine by composition a monotone map which shall form the

underlying singular monotone map of 𝑞 ◦ 𝑝 ; this determines

the shape of 𝑞 ◦ 𝑝 entirely.

(3) To equip to this a labelling of C-morphisms, for a regu-

lar/singular level 𝑙 of𝑍 to a regular/singular level 𝑙 ′′, take the
meet of all morphisms 𝑙 → 𝑙 ′′ in this planar diagram which

exist because C is locally finitely meet-complete and the

2-cell filler structure of framed zigzag maps ensures connec-

tedness. Case analysis on 𝑙 and 𝑙 ′′ yields three possibilities:
(a) regular-to-regular components, from a regular level of 𝑍

to a regular level of 𝑍 ′′;
(b) singular-to-singular components, from a singular level of

𝑍 to a singular level of 𝑍 ′′;
(c) regular-to-singular components, from a regular level of 𝑍

to a singular level of 𝑍 ′′.
Only in the last case is the meet not trivially determined,

due to lacking a minimal path arising from shape alone.

Example 3.3. Figure 2 shows an example exploded diagram in C
on the right, as in step 1. Step 2 composes the underlying monotone

maps of 𝑝 and 𝑞, obtaining the shape of Figure 3. Finally, in step 3,

7
In the case where C is cocomplete, 𝜋 is an opfibration [17, Proposition 36].

7
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Z ′′ r′′0 s′′0 r′′1 s′′1 r′′2

Z ′ r′0 s′0 r′1 s′1 r′2 s′2 r′3

Z r0 s0 r1

f ′′
0 b′′0 f ′′

1 b′′1

q

;
f ′
0 b′0

f ′
1

b′1 f ′
2

b′2
p

f0 b0

Figure 2: Exploded diagram in C of 𝑍
𝑝−→ 𝑍 ′

𝑞−→ 𝑍 ′′. 𝑝 and 𝑞 determine C-morphism labels on the
vertical morphisms, which have been omitted for clarity.

Z ′′ r′′0 s′′0 r′′1 s′′1 r′′2

Z r0 s0 r1

f ′′
0 b′′0 f ′′

1 b′′1

q◦p
f0

;

b0

Figure 3: Exploded diagram in C of 𝑍
𝑞◦𝑝−−−→ 𝑍 ′′.

Z ′′

Z

Z

q

;

r′′i s′′i r′′i+1

rj sj . . . sj+k rj+k+1

rj sj . . . sj+k rj+k+1

f ′′
i b′′i

fj
bj+k

fj

fj

bj+k

bj+k

Figure 4: Exploded diagram in C of 𝑞 ◦ id𝑍

the C-morphism labelling is obtained on all the vertical morphisms

of Figure 3 by taking the meet of all corresponding paths from

Figure 2; the only instances where this meet is not determined

by shape alone are for the paths 𝑟0 → {𝑟 ′
1
, 𝑠′
1
, 𝑟 ′
2
, 𝑠′
2
} → 𝑠′′

1
and

𝑟1 → {𝑠′
2
, 𝑟 ′
3
} → 𝑠′′

2
.

The identity morphism for some framed zigzag 𝑍 in Zig (C) is
generated by the identity monotone map on singular levels of 𝑍

labelled by identity morphisms with only trivial 2-cell fillers, as in

the bottom half of Figure 4.

Lemma 3.4. Composition of framed zigzag maps is unital.

Proof. Assume that 𝑝 is the identity. Every regular-to-regular or

singular-to-singular component of the composite is the composition

of an identity morphism with a component of 𝑞, and therefore

is equal to the corresponding component of 𝑞. For a regular-to-

singular component, this is derived from trivial structure of the

2-cell fillers of 𝑝 . For example, consider the paths 𝑟 𝑗 → 𝑠′′
𝑖

in

Figure 4. Because 𝑝 has trivial 2-cell fillers, this induces the path 𝑟 𝑗 =

𝑟 𝑗 → 𝑠′′
𝑖
as the minimal one, which agrees with the corresponding

component of 𝑞.

Similar reasoning holds for when 𝑞 is the identity. □

Lemma 3.5. Composition of framed zigzag maps is associative.

r′′′ s′′′ r′′′ s′′′ r′′′ s′′′

r′′ s′′ r′′ s′′

r′ s′ r′ s′

r s r s r s

m m m

i

j k l

i

j k l

e

f g h

e

j◦f k◦f∧l◦g l◦h

a

b c d

a

f◦b g◦b∧h◦c h◦d

a

b c d

Figure 5: Fragment of 𝑍 → 𝑍 ′ → 𝑍 ′′ → 𝑍 ′′′, associated to the
left and right

Proof. Associativity will arise due to C being a Pos-category
which has meets in Hom posets preserved by composition, and that

this meet when considered as a binary operation is itself associative.

For example, consider the fragment in Figure 5: the component

𝑟 → 𝑠′′′ obtained by associating composition on the left is 𝑘 ◦ 𝑓 ◦
𝑏∧𝑙 ◦ (𝑔◦𝑏∧ℎ◦𝑐), whereas on the right it is (𝑘 ◦ 𝑓 ∧𝑙 ◦𝑔) ◦𝑏∧𝑙 ◦ℎ◦𝑐 .
Both of these expressions are equal to 𝑘 ◦ 𝑓 ◦𝑏 ∧ 𝑙 ◦𝑔 ◦𝑏 ∧ 𝑙 ◦ℎ ◦ 𝑐 .

□

Lemma 3.6. Composition of framed zigzag maps is monotone.

Proof. Let

Z Z ′ Z ′′
p′

p

q′

q

be framed zigzag maps. 𝑞 and 𝑞′ have the same shape as they are

comparable, and each component of 𝑞′ is above its corresponding
component of 𝑞. Therefore, 𝑞 ◦ 𝑝 ⇒ 𝑞′ ◦ 𝑝 , as both are given with

respect to these components. Similarly, 𝑞 ◦ 𝑝 ⇒ 𝑞 ◦ 𝑝′. □

Combining all of these, we can ascertain that Zig (C) is a Pos-
category.

Theorem 3.7. Zig (C) is a Pos-category.

3.1.1 Iterated framed zigzags. Recall that this gadget is supposed
to represent the space of 1D string diagrams of a signature encoded

by C, and that Zig𝑛 (C) B Zig

(
Zig

𝑛−1 (C)
)
, where Zig

0 (C) B C,
is supposed to represent the space of 𝑛-dimensional string diagrams.

In order for this 𝑛-fold iterated construction to be well-defined, we

must show the following.

8
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Proposition 3.8. Every Hom poset in Zig (C) is locally finitely
meet-complete, and these meets are preserved by composition.

Proof. Every poset is partitioned into connected components

by the symmetric closure of its order relation. Each connected

component [𝑝] of Zig (C) (𝑍, 𝑍 ′) corresponds to framed zigzag

maps with a fixed shape, where every 𝑝 is component-wise con-

nected in the appropriate Hom poset of C. In other words, they

exist in a fibre over the projection 𝜋 : Zig (C) → ∆, living over

some 𝛼 ∈ ∆; moreover, in the case that C is itself a framed zigzag

category already, every component is also component-wise con-

nected recursively. The meet of any finite subset of [𝑝] is given
by component-wise meets in C, which exist by assumption. That

composition preserves these meets is also inherited from C. □

3.2 The case for C being an arbitrary
Pos-category

Definition 3.2 requires C to have locally finitely meet-complete

Hom posets in order for composition to be well-defined. However,

in practice, we are interested in the case where C is an arbitrary Pos-
category. This is rectified by freely passing from C to the

∧
-Lat-

category 𝐹∗ (C) as in Corollary 2.25, seen as a Pos-category, via base
change. Such a Pos-category is guaranteed to have meet-complete

Hom posets, so satisfies the hypotheses on Definition 3.1; moreover,

because the process of moving from C to 𝐹∗ (C) preserves existing
meets in Hom posets, we can interpret the result of composition

of framed zigzag maps as follows: if it is some ‘formal’ meet of

morphisms in any component that does not reflect back to a C-
morphism, then it is considered a failure and does not represent

a ‘meaningful’ framed zigzag map. We would expect that when

Zig (C) models some theory of string diagrams, then these failures

never occur.

The reason this completion needs to be done is analogous to

the problem of the ordinary zigzag category Zig
0
(C) being ‘too

big’: informally, we want to think of Zig
0
(C) as the space of com-

binatorial encodings of 1D string diagrams of a signature encoded

by C, but it contains more objects which do not have any mean-

ingful interpretation in this sense. For example, if C encodes the

algebraic signature consisting of two 0-cells 𝑥 and 𝑦 and a single

1-cell 𝑓 : 𝑥 → 𝑦, then Zig
0
(C) contains the object 𝑥 → 𝑓 ← 𝑦

which represents 𝑓 as a string diagram, but it also has objects like

𝑥 → 𝑓 ← 𝑓 which can only be considered ill-typed.

The idea is that framed zigzag maps with components given

by meets which exist only formally under this machinery are also

devoid of meaning under this interpretation, and that because 𝐹∗ (C)
always exists we can pretend that Definition 3.1 works even for the

case where C lacks some meets in its Hom posets, as will be the

case in Section 4.

3.3 Colimits in C
A prominent idea in the theory of zigzag categories is that all

complex homotopical structure can be built from a primitive con-
traction operation [17, §3]. The contraction operation is essentially

a sequence of colimits, which in the theory of framed zigzags are

replaced by oplax conical colimits. It will come to pass that an

oplax conical colimit in a zigzag Pos-category Zig (C) is ultimately

determined by oplax conical colimits in C, and this will be reflected
in our recursive collapse-colimit algorithm: the base case of this

algorithm is the computation of an oplax conical colimit in a Pos-
category C which is to be thought of as a ‘thick’ poset encoding an

algebraic signature of higher string diagrams.

This section is dedicated to describing this base case and justify-

ing its correctness.

In the original theory, this base case takes as input a poset; a

poset is a somewhat trivialised type of category — one which is

both skeletal and thin. In order to explain what is meant by ‘thick’

poset, we observe how Pos-enrichment allows for a somewhat

subtle un-trivialisation of the notion of a poset.

A generalised analogue of thin category (i.e. a preorder) for our

enriched categories is desired. Thinness in a category is the property

that every Hom set is either empty or the singleton; in other words,

a thin category is a Bool-enriched category.

Lemma 3.9. There is a free-forgetful adjunction Pos
𝐹
⇄
𝑈

Bool.

The functor 𝐹 sends a poset to true if and only if it is non-empty,

and it is cartesian (and hence strong and lax monoidal). Moreover,

because this functor is strong monoidal, this is a monoidal adjunc-

tion which induces the following.

Lemma 3.10 ([7, §4.4]). There is a 2-adjunction Pos-Cat
𝐹∗
⇄
𝑈∗

Bool-Cat.

In particular, this means that every category enriched in Pos
admits a Bool-category by base change along 𝐹 , which we call the

underlying preorder, and this process preserves enriched colimits

because 𝐹 is a left adjoint.

Definition 3.11 (Underlying preorder). Let C be a Pos-category.
The underlying preorder of C is the preorder C≲ of objects of C,
ordered by 𝑐 ≲ 𝑐′ if and only if C(𝑐, 𝑐′) ≠ ∅.

Definition 3.12 (Local-colimit). Given some diagram 𝐷 : 𝐽 → C,
for 𝑖𝑑-max C, the local-colimit is the following procedure:

(1) 𝐷 induces a sub-Pos-category of C by its full image, which

admits an underlying preorder. If this preorder does not

admit a unique maximal element, then fail, otherwise obtain

𝐷𝑥 , for some 𝑥 ∈ 𝐽 , with the property that for all 𝑗 ∈ 𝐽 ,

C(𝐷𝑥, 𝐷 𝑗) ≠ ∅ ⇐⇒ 𝑗 = 𝑥 .

(2) If the meet of every 𝐷 𝑗,𝑥 [𝐽 ( 𝑗, 𝑥)] ⊆ C(𝐷 𝑗, 𝐷𝑥), for 𝑗 ∈ 𝐽 ,

does not exist in the image of 𝐷 then fail. Otherwise, obtain

some morphism 𝑓 : 𝑗 → 𝑥 of 𝐽 for which 𝜆 𝑗 B 𝐷𝑓 forms a

leg making 𝐷𝑥 into the tip of an oplax cocone 𝜆.

Proposition 3.13. If the procedure of Definition 3.12 succeeds,
the result is the unique local oplax cocone and it is maximal in
OplaxCocone(𝐷,𝐷𝑥).

Proof. First, we show that 𝜆 is an oplax cocone. For any 𝑓 : 𝑗 →
𝑗 ′ in 𝐽 , we have that for all 𝑔 : 𝑗 ′ → 𝑥 , 𝜆 𝑗 ⇒ 𝐷𝑔 ◦ 𝐷𝑓 because

𝐷 (𝑔 ◦ 𝑓 ) ∈ 𝐷 𝑗,𝑥 [𝐽 ( 𝑗, 𝑥)] and 𝜆 𝑗 is the meet of this set. Moreover,

𝜆 𝑗 ′ = 𝐷𝑔 for some 𝑔, hence 𝜆 𝑗 ⇒ 𝜆 𝑗 ′ ◦ 𝐷𝑓 . It is a local oplax

cocone by construction. Uniqueness and maximality follow from

Proposition 2.31. □

Proposition 3.14. If there is a unique local oplax cocone for 𝐷 ,
then the procedure of Definition 3.12 succeeds and finds it.
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Proof. Suppose that such a local oplax cocone 𝜆 exists, with

tip 𝐷𝑥 for some 𝑥 ∈ 𝐽 . Then, for any 𝑥 ≠ 𝑗 ∈ 𝐽 , it must be the

case that 𝐷𝑥,𝑗 [𝐽 (𝑥, 𝑗)] = ∅; otherwise, there would be a morphism

𝐷𝑓 : 𝐷𝑥 → 𝐷 𝑗 , for which another local oplax cocone of tip 𝐷 𝑗 can

be built by composition with components of 𝜆. Therefore, step 1

succeeds, finding 𝑥 .

Because 𝜆 is an oplax cocone, for any 𝑓 : 𝑗 → 𝑥 in 𝐽 , 𝜆 𝑗 ⇒
𝜆𝑥 ◦ 𝐷𝑓 . D is 𝑖𝑑-max, so 𝜆𝑥 ⇒ 𝑖𝑑 , hence 𝜆 𝑗 ⇒ 𝐷𝑓 . As 𝜆 is local,

𝜆 𝑗 = 𝐷𝑓 for some 𝑓 , therefore the meet of 𝐷 𝑗,𝑥 [𝐽 ( 𝑗, 𝑥)] exists, so
step 2 succeeds. □

Combining these, we obtain the following.

Theorem 3.15 (Correctness of Definition 3.12). 𝐷 admits a
unique local oplax cocone if and only if the procedure of Definition 3.12
succeeds.

Now, according to Definition 2.29, this local oplax cocone is the

oplax conical colimit exactly when there is an order isomorphism

C(𝐷𝑥, 𝑐) � OplaxCocone(𝐷, 𝑐)

for all 𝑐 ∈ C, natural in 𝑐 . That is, it suffices to check that each

𝑓 : 𝐷𝑥 → 𝑐 monotonically determines a new oplax cocone by

composition with 𝜆, i.e. 𝛼 𝑗 = 𝑓 ◦ 𝜆 𝑗 .
In particular, if there is only one C-morphism with domain 𝐷𝑥 ,

the identity, then 𝜆 is automatically the oplax conical colimit.

In order to make our computation smaller, we can leverage the

fact that C is 𝑖𝑑-max and that we are interested in oplax conical

colimits.

Definition 3.16 (Collapse-colimit base case). Given some diagram

𝐷 : 𝐽 → C, for 𝑖𝑑-max C, the collapse-colimit base case is the fol-
lowing procedure:

(1) Simplify 𝐷 by collapse (Definition 2.36) to obtain a smaller

diagram ∇ (𝐷).
(2) Perform the local-colimit procedure of Definition 3.12 on∇ (𝐷).

Correctness of this simplification follows from Proposition 2.37.

3.4 Colimits in Zig (C)
An oplax conical colimit of Zig (C) is built by lifting oplax con-

ical colimits in C and gluing them together. The technical ma-

chinery of this procedure is determined by the natural projection

𝜋 : Zig (C) → ∆, which is an opfibration in the case of C being

cocomplete in an appropriately enriched setting. This mirrors the

procedure of Reutter and Vicary [17, §3], and determines the re-

cursive case of the collapse-colimit algorithm.

In this section, we briefly justify that correctness is retained

in our enriched setting. A more detailed explanation is given in

Appendix C, but the interested reader should refer to Reutter and

Vicary [17, §3] for all the details; in our setting, the results are

analogous, replacing ‘zigzag category’ with ‘framed zigzag Pos-
category’ and ‘colimit’ with ‘oplax conical colimit’.

Firstly, we establish that the singular projection functor [17,

Definition 10] works in our enriched setting.

Definition 3.17 (Singular projection Pos-functor). There is a Pos-
functor 𝜋 : Zig (C) → ∆ called the singular projection which sends

a framed zigzag 𝑍 to [𝑛] ∈ ∆, where 𝑛 is the number of singular

levels of 𝑍 , and a framed zigzag map 𝑝 : 𝑍 → 𝑍 ′ to its underlying

singular monotone map. It is trivially monotone.

Remark 3. Definition 3.17 can also be obtained as the image of the

terminal Pos-functor C → 1 by viewing Zig (−) as a Pos-functor
Pos-Cat→ Pos-Cat, along the equivalence Zig (1) � ∆.

Remark 4. Oplax conical colimits and conical colimits in ∆ coincide.

This is because ∆ has only trivial 2-cell fillers. Similarly, oplax

conical limits and conical limits in ∆=
coincide.

The constructions still apply, because 𝜋 is a Pos-opfibration
when C is Pos-cocomplete (and when C is not Pos-cocomplete, we

can take the free Pos-completion along the enriched dual Yoneda

embedding), meaning that oplax conical colimits can be lifted along

𝜋 under suitable assumptions.

Definition 3.18 (Collapse-colimit recursive case). Given some con-

nected diagram 𝐷 : 𝐽 → Zig (C), the collapse-colimit recursive case
is the following procedure:

(1) build the oplax conical colimit of the composite diagram

𝜋◦𝐷 ; if this does not exist then fail, otherwisewe obtain some

object [𝑛] ∈ ∆ equipped with an oplax cocone of monotone

maps, one for each 𝑗 ∈ 𝐽 , which determines the singular

projection of the result; along the isomorphism ∆ � ∆op

= we

also obtain an oplax conical colimit [𝑛 + 1] ∈ ∆op

= which

determines the regular projection of the result; together,

these fix the shape of the result framed zigzag and component

maps into it;

(2) recalling that 𝐷 : 𝐽 → Zig (C) is equivalent to a larger dia-

gram 𝐸 (𝐷) : 𝐸 (𝐽 ) → C by explosion, obtain a sequence of

diagrams

(a) for 𝑠𝑖 ∈ [𝑛], 𝐸 (𝐷)𝑠𝑖 : 𝐸 (𝐽 )𝑠𝑖 → C dictated by the reverse-

reachability closure of 𝑠𝑖 with respect to 𝐸 (𝐽 );
(b) subdiagrams of this for 𝑟𝑖 , 𝑟𝑖+1 ∈ [𝑛 + 1], 𝐸 (𝐷)𝑟𝑖 and

𝐸 (𝐷)𝑟𝑖+1 , analogously;
(c) recursively compute the collapse-colimit for𝐸 (𝐷)𝑟𝑖 ,𝐸 (𝐷)𝑠𝑖 ,

and 𝐸 (𝐷)𝑟𝑖+1 , failing if any of these fail;

(d) the oplax conical colimits obtained from this determines

the fragment of the result framed zigzag corresponding to

singular height 𝑖 and its adjacent regular heights, with

the legs of the oplax cocones determining contiguous

fragments of component maps for each framed zigzag

𝐷 𝑗 for 𝑗 ∈ 𝐽 ;

(3) glue together these fragments to form both the framed zigzag

which is the oplax conical colimit of 𝐷 , and framed zigzag

maps into it forming an oplax cocone over 𝐷 ; the fact that

these fragments are compatible on the boundary and hence

can be glued results from Proposition C.4.

Remark 5. Reutter and Vicary [17] make the additional assumption

of globularity: that every regular-to-regular component of a zigzag

map is an identity morphism. This assumption makes sense in the

context of modelling higher string diagrams, as every such one will

be globular in this sense, but is not required for the constructions

to work. Here we have presented the algorithm in a way which

does not require this assumption, generalised to framed zigzags.
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Remark 6. This generalises the composition of framed zigzag maps

(Definition 3.2), which can be seen as this computation over the

diagram 𝑞 ◦ 𝑝 for two composable framed zigzag maps 𝑝 and 𝑞.

Theorem 3.19 (Correctness of Definition 3.18 [17, Theorem

33]). For a Pos-category C which admits a terminal object, a connec-
ted diagram 𝐷 : 𝐽 → Zig (C) admits an oplax conical colimit if and
only if the procedure of Definition 3.18 succeeds, i.e. the oplax conical
colimits in steps 1 and 2c exist and the procedure constructs them.

3.5 Unframing
The framed zigzag construction should be a conservative extension

of the original theory: the admissible operations in the framed

theory, restricting to not using any invertibility, are exactly the

ones that were present in the unframed theory of Reutter and

Vicary [17].

Definition 3.20 (Unframing). Let Zig𝑛 (C) be a framed zigzag

Pos-category. The unframing of Zig
𝑛 (C) is the zigzag category

determined recursively by:

𝑛 = 0 the underlying preorder C≲ ;
𝑛 > 0 Zig

0

(
unframing of Zig

𝑛−1 (C)
)
.

Effectively, the framing is discarded in the base category. This

extends to a Pos-functor Zig𝑛 (C) → Zig
𝑛
0
(C≲), seeing the latter

as the free Pos-category on the category Zig
𝑛
0
(C≲) with trivial 2-

cell fillers (Lemma 2.14), allowing us to talk about the unframing of

framed zigzag maps and diagrams in a framed zigzag Pos-category.

Proposition 3.21. Let 𝐷 : 𝐽 → Zig𝑛 (C) be a diagram in a
framed zigzag Pos-category which admits an oplax conical colimit.
Then the unframing of 𝐷 admits a colimit, obtained by unframing
the components of the oplax conical colimit of 𝐷 .

Proof. The unframing Pos-functor is a left adjoint, and hence

preserves weighted Pos-colimits: for the case that 𝑛 = 0, this is

the adjunction of Lemma 3.10; for 𝑛 > 0, this is the adjunction of

Lemma 2.14. □

Example 3.22 (Unframing does not reflect colimits). Consider the
case where C is the Pos-category with two objects 𝑥 and 𝑓 determ-

ined by C(𝑥, 𝑓 ) B {1, 2} with 1 and 2 incomparable. C≲ is the

poset given by 𝑥 ≤ 𝑓 . We have the following diagrams in C and

C≲ respectively:

𝑥
1−→ 𝑓

2←− 𝑥
1−→ 𝑓

2←− 𝑥
unframe

⇝ 𝑥 → 𝑓 ← 𝑥 → 𝑓 ← 𝑥 ;

the former does not admit an oplax conical colimit, because there

is no meet of {1, 2} in C(𝑥, 𝑓 ) and hence no leg for the middle 𝑥 ,

but the latter does: 𝑓 with legs 𝑥 → 𝑓 and id𝑓 as appropriate.

This example corresponds to an ‘ill-typed’ contraction [17, Ex-

ample 32] in the unframed theory, which is a valid contraction

that is later rejected by the type-checking procedure described by

Heidemann et al. [9], and demonstrates how our theory is more

‘type-aware’.

4 COHERENT INVERTIBILITY
Herewe demonstrate some examples of framed zigzag Pos-categories
which model the setting for 𝑛-dimensional string diagrams, with

respect to some algebraic signature, which admit coherently in-

vertible cells. For lack of a better scheme, morphisms in the base

Pos-category (which represent framing) are simply indexed by pos-

itive natural numbers, but the reader is reminded that they are

supposed to signify direction in the context of an 𝑛-dimensional

string diagram.

Each example is constructed inside homotopy.io, and can be

easily reproduced by the interested reader
8
. Further guidance on

the use of the system is available [16, 11].

4.1 Invertible 1-cell
The algebraic signature to be modelled consists of two 0-cells

𝑥 and 𝑦, and a single 1-cell 𝑓 : 𝑥 → 𝑦 which admits an inverse

𝑓 −1 : 𝑦 → 𝑥 .

The base Pos-category in this case is the Pos-category C given

by the diagram 𝑥
1−→ 𝑓

2←− 𝑦. 1-dimensional string diagrams over

this signature are encoded by objects of Zig (C) (C trivially satisfies

the hypotheses in Definition 3.1) such as 𝑥
1−→ 𝑓

2←− 𝑦, 𝑦 2−→ 𝑓
1←− 𝑥 ,

and 𝑥
1−→ 𝑓

2←− 𝑦
2−→ 𝑓

1←− 𝑥 , which respectively represent 𝑓 , 𝑓 −1

and the composite 𝑓 −1 ◦ 𝑓 as string diagrams:

Here the coloured wires represent 𝑥 and 𝑦, with 𝑓 and 𝑓 −1 being
coloured points. In our string diagram convention, diagrams go

from bottom-to-top.

The cancellation of 𝑓 −1 ◦ 𝑓 = id𝑥 seen directionally left-to-right

as a 2-cell is represented by the 2-dimensional string diagram:

This is encoded by some object • ∈ Zig2 (C), with projections in

Zig (C) and C9:

• ;

r1

s0

r0

;

x

x f x

x f y f x.

1
1 1

1

1

2 2

2

1

1

In particular, this diagram is obtained by contracting the 1-dimensional

string diagram 𝑓 −1 ◦ 𝑓 , and observe that 𝑓 is the oplax conical

colimit of the directed diagram

𝑥
1−→ 𝑓

2←− 𝑦 2−→ 𝑓
1←− 𝑥,

as given by Definition 3.12, and this determines the framed zigzag

map 𝑟0 → 𝑠0 above.

8
In order for the system to allow the inverse of an 𝑛-cell for 𝑛 > 1 to be attached, that

cell must be marked ‘invertible’ inside the signature.

9
All 2-cell fillers are trivial, so have been elided in the diagram.
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An example witness to 𝑓 −1 being a coherent inverse to 𝑓 is given

by the framed zigzag map of the following form:

𝑐−→

Crucially, such a framed zigzag map is obtained by contraction, and

we conjecture that all such coherences in every dimension are also

obtainable this way.

This can also be seen as part of a 3-cell, which is the 3-dimensional

string diagram:

The front face of this picture is encoded by the domain of 𝑐 , and the

back face by its codomain. Scanning continuously from front-to-

back, 𝑐 itself encodes the homotopical deformation of ‘straightening

the snake’. The 3-cell 𝑐 is itself coherently invertible, and will admit

an infinite family of coherences in the same way as 𝑓 .

4.2 Invertible 2-cell scalar
In this example, we model the algebraic signature consisting of a

single 0-cell 𝑥 , and a single 2-cell scalar 𝑠 : id𝑥 → id𝑥 which admits

vertical and horizontal inverses of the same type.

The base Pos-category in this case is the Pos-category C given

by two objects 𝑥 and 𝑠 , with the only non-identity morphisms being

C(𝑥, 𝑠) B
3 4

1 2

Observe that C(𝑥, 𝑠) is not meet-complete (e.g. there is no meet of

{1, 2}), so technically we rely on Section 3.2 to obtain an iterated

framed zigzag Pos-category. The objects of Zig
2 (C), drawn as

diagrams in C, which represent 𝑠 and its inverses are:

x x

x s x x s x

x x

x x

x s x x s x

x x

2 2

3 4
horiz.

inverse
4 3

1

vertical inverse

1

vertical inverse

1 1

3 4
horiz.

inverse
4 3

2 2

The top-left diagram represents 𝑠 itself, with its vertical inverse

𝑠−1 being represented by its reflection in the horizontal axis below,

and its horizontal inverse being represented by its reflection in the

vertical axis to the right.

Even though as diagrams in C these all appear to contain the

same data, as objects of Zig
2 (C) they are distinct. This example

also illustrates the necessity of Pos-enrichment and non-trivial 2-

cell fillers: without that, commutativity of all the triangles would

be imposed, which in turn determines 1 = 2 = 3 = 4 and removes

the ability for 𝑠 to be distinguished from its inverses in Zig
2 (C).

The cancellation of 𝑠−1 ◦ 𝑠 = id
id𝑥

is again given by the framed

zigzag map generated by contraction:

𝑐−→

or as a 3-dimensional string diagram:

That this inverse is coherent says, among other things, that the

3D snake that can be constructed by extending this also admits a

homotopy obtained by contraction which pulls it straight.

In Appendix A we use an invertible scalar to illustrate a formal

proof of Theorem 1.1, as stated in the introduction.
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A THE FIGURE-8 THEOREM
Here we illustrate a formalised proof of Theorem 1.1 as stated

in the introduction. This proof can also be viewed as a movie of

3-dimensional string diagrams [12].

→ ← →

← → ←

→ ← →

← → ←

→ ← →

← → ←

→ ←

B PATHOLOGIES OF OPLAX CONICAL
COLIMITS

In this section, we collect some examples where oplax conical colim-

its fail to exist in pathological ways.

Lemma 2.32 shows that whenever a diagram admits a terminal

object in its indexing category, the colimit of this diagram exists;

this is not true in the case of oplax conical colimit.

Example B.1. Let 𝐹 be the diagram over thewalking arrow (which

has a terminal object) which chooses 𝑔 in the Pos-category on the

right:

· · x y.F

f

g

There are two oplax cocones over 𝐹 , both with tip𝑦, with legs given

by 𝑓 and 𝑔 respectively; however, neither cocone factorises via the

other, so no oplax conical colimit exists.

However, if 𝐹 had chosen 𝑓 instead, then the oplax conical colimit

would exist because only one oplax cocone would exist.

Proposition 2.37 has a condition that collapse only preserves

oplax conical colimits when the Pos-category is 𝑖𝑑-max. Here is an

example showing that this condition is necessary.

Example B.2. Let C be the category determined by

C(𝑥,𝑦) B {𝑓 ⇒ 𝑔}, C(𝑥, 𝑧) B {ℎ},
C(𝑦, 𝑐) B {𝑎}, C(𝑧, 𝑐) B {𝑏},
C(𝑥, 𝑐) B {𝑓 ′ ⇒ 𝑔′ ⇒ ℎ′}, C(𝑐, 𝑐) B {𝑢− ⇒ id𝑐 ⇒ 𝑢+},

with composition given by

𝑎 ◦ 𝑓 = 𝑓 ′, 𝑎 ◦ 𝑔 = 𝑔′,

𝑏 ◦ ℎ = ℎ′,

𝑢+ ◦ 𝑓 ′ = 𝑔′, 𝑢− ◦ 𝑓 ′ = 𝑓 ′,

𝑢− ◦ 𝑔′ = 𝑔′, 𝑢+ ◦ 𝑓 ′ = 𝑓 ′ .
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The diagram

x x

y

z

c

g

h h

g

→

f ′ g′b
a

admits an oplax conical colimit 𝑐 , however this is not preserved by

its collapsed diagram 𝑧
ℎ←− 𝑥

𝑔
−→ 𝑦.

C HIGH-LEVEL METHODS REVISITED
We briskly develop the theory of Pos-opfibrations, based the theory
of 2-fibrations [10, 5]. Fix a Pos-functor 𝑝 : E → B.

Definition C.1 (Pos-opcartesian morphism). A morphism 𝑓 : 𝑥 →
𝑦 in E is 𝑝-opcartesian if for any 𝑔 : 𝑥 → 𝑧 in E and 𝑤 : 𝑝𝑦 → 𝑝𝑧

in B such that 𝑝𝑔 = 𝑤 ◦ 𝑝 𝑓 , there is a unique morphism 𝑤̂ : 𝑦 → 𝑧

such that 𝑔 = 𝑤̂ ◦ 𝑓 . In pictures:

E B
p

z

x y
f

∀g
∃!ŵ

pz

px py.
pf

pg
∀w

𝑤̂ is the 𝑝-opcartesian lift of𝑤 .

Definition C.2 (Pos-opcartesian 2-cell filler). Let 𝑓 , 𝑔 : 𝑥⇒𝑦 in E.
A 2-cell filler 𝑓 ⇒ 𝑔 is 𝑝-opcartesian if for all ℎ ⇒ 𝑓 such that

𝑝𝑓 ⇒ 𝑝𝑔⇒ 𝑝ℎ, 𝑔⇒ ℎ:

E(x, y) B(px, py)
p

h

f g

∀ ∃

ph

pf pg.

∀

Definition C.3 (Pos-opfibration). 𝑝 is a Pos-opfibration when

(1) for each 𝑒 ∈ E, and𝑤 : 𝑝𝑒 → 𝑏 in B, there is a 𝑝-opcartesian
lift 𝑤̂ : 𝑒 → 𝑒′:

e e′ E

pe b B,

ŵ

p

w

(2) for each 𝑓 : 𝑒 → 𝑒′ in E such that there is a𝑢 : 𝑝𝑒 → 𝑝𝑒′ with
𝑝 𝑓 ⇒ 𝑢, there is another morphism 𝑔 : 𝑒 → 𝑒′ admitting a

𝑝-opcartesian 2-cell filler 𝑓 ⇒ 𝑔, such that 𝑝𝑔 = 𝑢:

e e′ E

pe pe′ B,

f

g

p

pf

u

∃

∀

(3) the horizontal composition of 𝑝-opcartesian 2-cells is 𝑝-

opcartesian.

Remark 7. The first part of Definition C.3 is the familiar lifting

property of opfibrations from ordinary category theory; the second

part says that the monotone map induced by 𝑝 on locally each

Hom poset is also an opfibration, treating those Hom posets as

categories and the monotone map as a functor; the third part says

that the property of being a 𝑝-opcartesian 2-cell filler is closed

under whiskering by morphisms.

Proposition C.4. If C is Pos-cocomplete, then 𝜋 : Zig (C) → ∆
is a Pos-opfibration.

Proof. This will follow quite easily from the fact that the 2-

cell filler structure of ∆ is trivial: each ∆( [𝑚], [𝑛]) is a discrete

poset where elements are comparable if and only if they are equal.

Therefore, it suffices to show that given a framed zigzag 𝑍 of length

𝑚, and a monotone map 𝛼 : [𝑚] → [𝑛], 𝛼 lifts to a framed zigzag

map 𝛼 : 𝑍 → 𝑍 ′ for some framed zigzag 𝑍 ′ of length 𝑛:

Z Z ′ Zig (C)

[m] [n] ∆ .

α̂

π

α

Analogously to Reutter and Vicary [17, Proposition 36], 𝑍 ′ is con-
structed by ‘collapsing’ adjacent singular levels of𝑍 by taking oplax

conical colimits, and creating new singular levels by ‘expanding’

regular levels along identities, as dictated by 𝛼 . □

Proposition C.5 ([10, §5]). Let 𝐷 : 𝐽 → E, 𝑝 : E → B be dia-
grams of Pos-categories, such that:

(1) 𝑝 is a Pos-opfibration;
(2) the composite 𝑝 ◦ 𝐷 admits an oplax conical colimit;
(3) every fibre 𝑝−1 (𝑏) admits 𝐽 -indexed oplax conical colimits,

which are preserved by base change.
Then 𝐷 admits an oplax conical colimit, and it is preserved by 𝑝 .

The idea of the proof is that enough structure is present to ensure

that all the morphisms forming the legs of the oplax conical colimit

in the composite diagram 𝑝 ◦ 𝐷 can be canonically lifted along the

opfibration to form an oplax cocone over 𝐷 , which will be the oplax

conical colimit.

As with Reutter and Vicary [17], we argue separately for the

soundness and completeness of the procedure of Definition 3.18.

Soundness means that the result of the procedure is an oplax conical

colimit, and completeness means that if the oplax conical colimit

exists it can be obtained from the procedure.
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C.0.1 Soundness.

Corollary C.6. Let C be Pos-cocomplete, and 𝐷 : 𝐽 → Zig (C)
be a connected diagram such that the composite 𝜋 ◦ 𝐷 admits an
oplax conical colimit. Then 𝐷 admits an oplax conical colimit, which
is preserved by 𝜋 .

Similarly to Reutter and Vicary [17], the Pos-categories C from

which we start are seldom Pos-cocomplete, and so we leverage the

enriched dual Yoneda embedding of C
𝑦
↩→ ˆC B [C, Pos]op of a Pos-

category into its free Pos-completion. This completion will admit all

Pos-weighted colimits, and the embedding preserves and reflects

these [14, §3.3], creating new ‘formal’ Pos-weighted colimits for

those which are not already present in C. It also induces a fully

faithful Pos-functor Zig (C)
Zig (𝑦)
↩→ Zig

(
ˆC
)
. Note that oplax conical

colimits are just Pos-weighted colimits of a specific weight (see

Appendix D). Then, starting from
ˆC, one can observe that the oplax

conical colimit obtained from Corollary C.6 is in the image of this

Pos-functor (analogous to Reutter and Vicary [17, Proposition 38])

and is reflected to an oplax conical colimit in C. In effect, the failure

cases captured by our algorithm represent exactly when a ‘formal’

oplax conical colimit not already existing in C persists in the final

result, and is analogous to the completion of Section 3.2. Note that

𝐶 also admits a terminal object, as it is the free Pos-completion

of C.

C.0.2 Completeness.

Lemma C.7. If C has a terminal object, then 𝜋 : Zig (C) → ∆
preserves connected oplax conical colimits.

Proof. Recall that any oplax conical limit in ∆=
is a conical

limit. The result follows as analogously to Reutter and Vicary [17,

Proposition 39], using the fact that, for a Pos-functor 𝐹 : C → D,

the forgetful Pos-functor 𝐹/𝑑 → C preserves connected conical

colimits. □

D OPLAX CONICAL COLIMITS ARE COLIMITS
OF ANOTHERWEIGHT

In this section, we show that oplax conical colimits are weighted

colimits for a certain weight. This means that they exist in any

cocomplete Pos-category (which admit all weighted colimits). The

original result is due to Street [21], who showed it in the case of

2-categories; we give a more explicit form.

First, we recall the notion of weighted colimit for Pos-categories.

Definition D.1 (Pos-weighted colimit). A weighted colimit of a

diagram 𝐹 : 𝐽 → C weighted by𝑊 : 𝐽 op → Pos, colim𝑊 𝐹 , is an

object of C with Pos-representation

C
(
colim

𝑊 𝐹, 𝑐

)
�

[
𝐽 op, Pos

]
(𝑊, C (𝐹−, 𝑐)) .

Explicitly, this equips colim
𝑊 𝐹 with a family of morphisms(

𝜄 𝑗,𝑤 : 𝐹 𝑗 → colim
𝑊 𝐹

)
𝑗∈ 𝐽 ,𝑤∈𝑊 𝑗

such that for all 𝑓 : 𝑗 → 𝑗 ′ and

𝑤 ∈𝑊 𝑗 ′:

colimW F

Fj Fj′
Ff

ιj,Wf(w) ιj′,w

commutes, and this is universal: any other object with such a family

of morphisms factors uniquely via colim
𝑊 𝐹 . This factorisation and

the mapping𝑊 𝑗 → C(𝐹 𝑗, colim𝑊 𝐹 ) are required to be monotone.

Remark 8. 𝑊 is a generalisation of the shape of the cocone. A

natural transformation 𝛼 𝑗 :𝑊 𝑗 → C(𝐹 𝑗, 𝑐) is a collection of maps

which act as legs of this generalised cocone, varying monotonic-

ally over weights𝑤 ∈𝑊 𝑗 ; the naturality property asserts that for

any 𝑓 : 𝑗 → 𝑗 ′, varying the weight determined by a specific leg

𝐹 𝑗 ′ → 𝑐 by mapping along𝑊 𝑓 is equal to precomposing that leg

by 𝐹 𝑓 — in other words, the previous triangle commutes repla-

cing 𝑐 for colim𝑊 𝐹 . The order isomorphism between the poset of

these natural transformations and the Hom poset C(colim𝑊 𝐹, 𝑐)
then establishes the universal property: firstly that a morphism

colim
𝑊 𝐹 → 𝑐 is in bijective correspondence with a particular gen-

eralised cocone of tip 𝑐 , and that moreover this bijection should

preserve and reflect orders
10
. That is, the order on factoring maps

C(colim𝑊 𝐹, 𝑐) is completely determined by cocones, one above

another exactly when the target cocones are ordered as such.

The ordinary (conical) colimit is obtained by taking𝑊 to be the

constant functor at the terminal object of Pos.

PropositionD.2 (Oplax colimits areweighted colimits [21]).

Every oplax colimit of 𝐹 : 𝐽 → C is equivalently given by a colimit
of 𝐹 weighted by some𝑊 : 𝐽 → Pos.

Corollary D.3. For Pos-cocomplete C, C admits all oplax colim-
its.

The explicit description of this transformation is given as follows.

Definition D.4 (Oplax conical weight). Let 𝐹 : 𝐽 → C be a dia-

gram. The oplax conical weight of 𝐹 is the contravariant Pos-functor
𝐿𝐽 : 𝐽

op → Pos which sends 𝑗 to the set of morphisms in 𝐽 with do-

main 𝑗 , ordered by 𝑢 ≤ 𝑣 whenever there exists some 𝐽 -morphism

which oplaxly extends 𝑢 to 𝑣 :

y

j x.

v

u

∃

A 𝐽 -morphism 𝑓 : 𝑗 → 𝑗 ′ is sent the monotone map of precomposi-

tion with 𝑓 , and Hom posets inherit the ordering on 𝐽 -morphisms.

Corollary D.5. Every oplax conical colimit of 𝐹 : 𝐽 → C is
equivalently given by a Pos-colimit of 𝐹 weighted by 𝐿𝐽 .

Example D.6 (Example B.1 revisited). Consider again the diagram

𝐹 in Example B.1. Its oplax conical weight 𝐿𝐽 is given by 0 ↦→
{id0 ≤ 0→ 1} and 1 ↦→ {id1}, with the unique morphism 0→ 1

mapping contravariantly to the monotone map id1 ↦→ 0 → 1. A

10
Recall that the natural transformations 𝛼 are ordered pointwise by components.
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colimit of 𝐹 weighted by 𝐿𝐽 is a universal object 𝑦 and a family of

maps 𝜄
0,id0 ⇒ 𝜄0,0→1 : 𝑥 → 𝑦 and 𝜄

1,id1 : 𝑦 → 𝑦 making

y

x yg

ι0,0→1 ι1,id1

commute. The only choice for 𝜄
1,id1 is id𝑦 , which in turn forces

𝜄0,0→1 to be 𝑔, but the only constraint on 𝜄
0,id0 is that it is below 𝑔,

and there is no universal choice between 𝑓 and 𝑔; this yields two

generalised cocones which do not factor through each other.

If 𝐹 is replaced by the diagram that chooses 𝑓 instead, which

replaces 𝑓 for 𝑔 in the previous triangle, then 𝜄0,0→1 is forced to

be 𝑓 , eliminating the possibility that 𝜄
0,id0 = 𝑔 — there is a unique

generalised cocone in this case, which is trivially universal, and

from this we would correctly deduce the existence of an oplax

conical colimit with leg 𝑓 .
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