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Structure of this talk

▶ Background information on monoidal categories
▶ Whirlwind tour of the foundations of homotopy.io
▶ String diagram success stories
▶ homotopy.io demo



Monoidal categories



Ordinary categories I

▶ Ordinary categories are the theory of sequential composition
▶ Unlike set theory, rather than focusing on what mathematical objects are, focus on

how they interact (via composition)
▶ Yoneda lemma

You work at a particle accelerator. You want to understand some particle. All you
can do are throw other particles at it and see what happens. If you understand how
your mystery particle responds to all possible test particles at all possible test energies,
then you know everything there is to know about your mystery particle. Vakil 2009



Ordinary categories II

▶ Admits a graphical calculus:

(𝑌
𝑔
−→ 𝑍) ∘ (𝑋

𝑓
−→ 𝑌) = 𝑋

𝑓
−→ 𝑌

𝑔
−→ 𝑍

▶ String diagrams:

𝑓

𝑔

𝑋

𝑌

𝑍



Ordinary categories III
▶ Identity law justifies representing objects as wires:

𝑋
𝑖𝑑(𝑋)
−−−−→ 𝑋

𝑓
−→ 𝑌 = 𝑋

𝑓
−→ 𝑌 = 𝑋

𝑓
−→ 𝑌

𝑖𝑑(𝑌)
−−−−→ 𝑌 ⤳ 𝑋

▶ Associativity justifies lack of bracketing:

(𝑋
𝑓
−→ 𝑌

𝑔
−→ 𝑍) ℎ−→ 𝑊 = 𝑋

𝑓
−→ (𝑌

𝑔
−→ 𝑍 ℎ−→ 𝑊) ⤳

𝑓

𝑔

ℎ

𝑋

𝑌

𝑍

𝑊



Monoidal categories
Definition
A monoidal category is a category 𝒞 equipped with
▶ a tensor product functor 𝒞 × 𝒞 ⊗−→ 𝒞,
▶ a distinguished (unit) object 𝐼,
▶ an associator natural isomorphism (− ⊗ −) ⊗ −

𝛼
≅ − ⊗ (− ⊗ −),

▶ left and right unitor natural isomorphisms 𝐼 ⊗ −
𝜆
≅ −, − ⊗ 𝐼

𝜆
≅ −,

satisfying the triangle equation:
(𝑋 ⊗ 𝐼) ⊗ 𝑌 𝑋 ⊗ (𝐼 ⊗ 𝑌)

𝑋 ⊗ 𝑌

𝛼𝑋,𝐼,𝑌

𝜌𝑋⊗𝑖𝑑(𝑌) 𝑖𝑑(𝑋)⊗𝜆𝑌

and pentagon equation:
(𝑋 ⊗ (𝑌 ⊗ 𝑍)) ⊗𝑊 𝑋 ⊗ ((𝑌 ⊗ 𝑍) ⊗𝑊)

((𝑋 ⊗ 𝑌) ⊗ 𝑍) ⊗𝑊 𝑋 ⊗ (𝑌 ⊗ (𝑍 ⊗𝑊))

(𝑋 ⊗ 𝑌) ⊗ (𝑍 ⊗𝑊)

𝛼𝑋,𝑌⊗𝑍,𝑊
𝑖𝑑(𝑋)⊗𝛼𝑌,𝑍,𝑊

𝛼𝑋⊗𝑌,𝑍,𝑊

𝛼𝑋,𝑌,𝑍⊗𝑖𝑑(𝑊)

𝛼𝑋,𝑌,𝑍⊗𝑊



Systems and processes

▶ Monoidal categories are the theory of parallel composition
▶ Interpret the objects (𝑋, 𝑌, 𝑍, …) of a category as systems, and morphisms (𝑓, 𝑔,

…) as processes
▶ Then the ⊗-composite 𝑓 ⊗ 𝑔 is then the process where 𝑓 and 𝑔 ‘happen at the same

time’

𝑓 𝑔

𝑋

𝑌

𝑍

𝑊



Coherence

▶ The category Set is monoidal with ⊗ ≔ ×
▶ … but we don’t have 𝐴 × (𝐵 × 𝐶) = (𝐴 × 𝐵) × 𝐶
▶ … but we do have a (natural!) isomorphism 𝐴 × (𝐵 × 𝐶)

𝛼
≅ (𝐴 × 𝐵) × 𝐶

▶ Similarly, we don’t have {∗} × 𝐴 = 𝐴 on-the-nose, but an obvious canonical
isomorphism {∗} × 𝐴

𝜆
≅ 𝐴

Theorem (Coherence for monoidal categories (Lane 1963))
In a monoidal category, any pair of parallel morphisms built from 𝛼, 𝜆, and 𝜌, are equal.

▶ Coherence morphisms only encode structural and ‘bureaucratic’ information



String diagrams
▶ Idea: quotient by coherence, and use topology to represent the structural

information
▶ Given 𝑋

𝑓
−→ 𝑋, 𝑌

𝑔
−→ 𝑌, and 𝑍 ℎ−→ 𝑍, draw both (𝑋 ⊗ 𝑌) ⊗ 𝑍

(𝑓⊗𝑔)⊗ℎ
−−−−−−−→ (𝑋 ⊗ 𝑌) ⊗ 𝑍 and

𝑋 ⊗ (𝑌 ⊗ 𝑍)
𝑓⊗(𝑔⊗ℎ)
−−−−−−−→ 𝑋 ⊗ (𝑌 ⊗ 𝑍) as:

𝑓 𝑔 ℎ

𝑋

𝑋

𝑌

𝑌

𝑍

𝑍

Theorem (Correctness of graphical calculus for monoidal categories (Joyal and
Street 1991))
A well-typed equation between morphisms in a monoidal category holds automatically if
and only if the corresponding string diagrams are planar isotopic.



Where do coherence results come from?

Theorem (Strictification for monoidal categories)
Every monoidal category is monoidally equivalent to a strict one.

▶ Analogous results hold for braided and symmetric monoidal categories
▶ Every (weak) 2-category is equivalent to a strict 2-category…
▶ …but not every (weak) 3-category is equivalent to a strict one!
▶ Gray categories give a semistrict, fully-expressive, description of weak 3-categories

with strict associators, strict unitors, and weak interchangers (Gordon, Power and
Street 1995)

▶ Associative 𝑛-categories (Dorn 2018) agree with Gray categories in dimension 3,
and are conjectured to be equivalent to weak 𝑛-categories



Weak interchange

In a monoidal category, we have a planar isotopy:

𝑓

𝑔

𝑌

𝑍𝑋

𝑊

≅
𝑓

𝑔

𝑋

𝑊

𝑍

𝑌

The witness is called the interchanger; strict interchange makes this an equation



Multiplicity versus dimensionality

Proposition
A monoidal category is precisely a 2-category which has only a single object.

Analogous to the following:

Proposition
A monoid is precisely a 1-category which has only a single object.

▶ When a 2-category has many objects, this is represented with coloured regions in
string diagrams

▶ Key idea: 𝑛-categories are most general, and correspond to 𝑛-ways to compose



Periodic table

k\n 0 1 2 …

0 sets categories 2-categories …
1 monoids monoidal categories monoidal 2-categories …
2 commutative

monoids
braided monoidal
categories

braided monoidal
2-categories

…

3 symmetric monoidal
categories

sylleptic monoidal
2-categories

…

4 symmetric monoidal
2-categories

…

⋮ ⋱

(Baez and Dolan 1995)



𝑛-categories

Definition (Globular weak higher categories)
A weak (𝑛 + 1)-category is a category weakly-enriched in 𝑛-categories, where Set is the
category of 0-categories.

▶ Simple intuitively, but notoriously hard to wrangle…
▶ Necessary coherence data explodes exponentially with dimension
▶ Difficulty lies in obtaining something weak enough to be expressive, but strict

enough to be usable: there is no clear ‘best’ semistrict theory! (Cheng and Lauda
2004)

▶ Our approach: 𝑛-dimensional string diagrams are well-behaved; derive a semistrict
presentation from that



Zigzags I

⤳

Figure 1: Encoding a 2D string diagram (Reutter and Vicary 2019)



Zigzags II

Figure 2: Figure 1 wireframe, with explicit rewrites



Zigzags III

Definition (Zigzag map)
In a category 𝒞, a zigzag map between two iterated cospans (zigzags) is given by a
monotone function between apexes and 𝒞-morphisms for each apex in the source,
subject to some conditions.

Definition (Zigzag category)
The zigzag category 𝑍𝒞 has as objects zigzags in 𝒞 and zigzag maps as morphisms.

▶ 𝑍1 is the simplex category Δ; i.e. the category of non-empty finite ordinals and
monotone maps

▶ 𝑍2
1 has objects shapes of 2D string diagrams

▶ 𝑍𝑛
1 has objects shapes of 𝑛-dimensional string diagrams



Zigzag contraction
𝑟2 [2] [2] 𝑟′1

𝑠1 [2]

𝑟1 [2] [2] 𝑠′0

𝑠0 [2]

𝑟0 [2] [2] 𝑟′0

𝑓0

𝑏0

𝑓1

𝑏1

𝑐0

𝑐1

𝑐0 ∘ 𝑓0

𝑐1 ∘ 𝑏1

Figure 3: Contracting the two-bead diagram



Applications



Categorical Quantum Mechanics
▶ Traditionally, quantum information theory happens in the category FHilb of

finite-dimensional Hilbert spaces

▶ FHilb is dagger-compact, and many constructions generalise to this setting

▶ In particular, Rel is also dagger-compact, and acts as a simplified ‘half-way’ point
between classical physics (embodied by Set) and quantum physics (FHilb)

▶ Success story: ZX-calculus (Hadzihasanovic, Ng and Wang 2018)

Figure 4: ZX calculus



Diagrammatic algebra

▶ Petri nets provide a formalism for dynamical systems, and are intrinsically related to
symmetric monoidal categories

▶ Linear algebra can be done graphically, using the graphical calculus of string
diagrams à la generators-and-relations (Bonchi, Sobocinski and Zanasi 2017)

▶ Bonchi, Holland et al. (2019) define a resource calculus with string diagrams, which
generalise signal flow graphs

Figure 5: Diagrammatic algebra



Knot theory

▶ Braided monoidal categories are the setting for knot theory

Theorem
Two knots are isotopic in 3D if and only if their 2D projections are equivalent by
Reidemeister moves:

(Diagrams from (Armstrong 2007))

▶ Our system intrinsically knows about the second and third Reidemeister moves!



Sphere eversion

▶ Outside In — How to turn a sphere inside out

Theorem
𝑆0, 𝑆2, and 𝑆6 are the only spheres which admit eversion.

▶ No hope of writing out the 𝑆6 eversion graphically, until now…

https://www.youtube.com/watch?v=OI-To1eUtuU&t=11s


Further work

▶ Homotopy type theory (HoTT)
▶ HoTT is very good at logical constructions, but leaves a lot to be desired for

topological arguments
▶ Syllepsis was only proven last year (Sojakova 2021)
▶ homotopy.io is the opposite — ideally, we want to take a proof in homotopy.io and

automatically translate it into HoTT; we can leverage CaTT (Finster and Mimram
2017):

homotopy.io ⤳ CaTT ⤳ HoTT

▶ homotopy.io is based on the theory of Associative 𝑛-categories
▶ By ‘homotopy’, we mean something entirely combinatorial rather than topological
▶ Need something like a model structure for this to be made precise

▶ How to handle 𝑛-groupoids instead of 𝑛-categories?
▶ We require a mechanism to generate coherent inverses for each element in our

signature
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