
Structure of this talk

▶ Key features of homotopy.io
▶ 𝑛-dimensional string diagrams
▶ Implementation-focused tour of the foundations of homotopy.io
▶ homotopy.io demo

20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

Structure of this talk

Thank you for inviting us to speak today. Many of you may have seen homotopy.io before in other
contexts, but this talk is specifically about the implementation of our tool as opposed to its mathematical
foundations. For this reason, we will not be discussing the mathematical details of higher categories, but
rather the technical details of how we have implemented a proof assistant for working with them. We
will give a split presentation - I’ll present some slides for the first half of the talk, and then Calin will
present a demo of the tool.



homotopy.io

▶ Web-browser-based graphical proof assistant written
in Rust and compiled to WebAssembly. Access at
https://beta.homotopy.io.

▶ Renders 2D geometry as interactive SVGs, and 3D
and 4D geometry via WebGL.

▶ Export diagrams in a variety of formats, including
TikZ, SVG, and STLs for 3D printing.

▶ Provides a rich set of tools for manipulating diagrams,
and generating higher-dimensional structure.

▶ Supports fully-coherent invertible generators.
▶ Save and publish your proofs and share them with

others by URL. Figure 1: homotopy.io interface

20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

homotopy.io

homotopy.io is a graphical proof assistant for working with finitely-presented semistrict higher categories
as 𝑛-dimensional string diagrams. It is written in Rust, and compiles to WebAssembly to run in the web
browser. No installation is required, and it can be accessed currently at https://beta.homotopy.io. It can
be used for simple cases like drawing TikZ of string diagrams, or to build up complex string-diagrammatic
proofs, as the system checks that each input is admissible. Interaction all happens through a point-and-
click interface, which triggers the recursive algorithms which manipulate the underlying combinatorial
encodings - I won’t have time to go into much detail about this, but please see our accompanying
paper and also the previous bodies of work on homotopy.io for details. homotopy.io now has support
for coherently-invertible generators, which simplifies working with equational theories of string diagrams.
You can save your proofs and share them with others by URL, as well as publish them permanently on
the homotopy.io website in an arXiv-like fashion so that it can be included as a reference in a paper.

https://beta.homotopy.io
https://beta.homotopy.io


𝑛-dimensional string diagrams

𝑓

𝑔

𝑌

𝑍𝑋

𝑊

Figure 2: 2D string diagram representing 𝑓 ⊗ 𝑖𝑑 (𝑊) ∘ 𝑖𝑑 (𝑋) ⊗ 𝑔

20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

𝑛-dimensional string diagrams

String diagrams provide a graphical calculus for reasoning about morphisms in monoidal categories. In a
certain vein, monoidal categories are a special case of higher categories; ergo, generalising away from this
setting yields a generalised string diagram: one which is topologically 𝑛-dimensional.
homotopy.io is a proof assistant based on a model of higher category, Associative 𝑛-categories, which has
this idea at its core. This model has strict associativity and unitality laws, meaning that string diagrams
can be written down in the usual way with no ambiguity about bracketing of terms, but weak interchange.
Weak interchange means that each admissible deformation of a 𝑛-dimensional string diagram is proof
relevant; that is, it admits a (𝑛 + 1)-cell from the source to the target of the deformation which when
rendered in 𝑛-dimensional space looks like a homotopical deformation, hence the name homotopy.io. In
other words, instead of having equalities between different string diagrams, we have directed rewrites
between them, which themselves have data attached to them.
Consider the 2D string diagram shown here. An admissible deformation of this diagram is the planar
isotopy given by interchanging the morphisms 𝑓 and 𝑔.



𝑛-dimensional string diagrams

𝑓

𝑔

𝑌

𝑍
𝑋

𝑊

𝑓
𝑔

𝑋

𝑊

𝑍

𝑌

𝑓

𝑔

𝑋

𝑊

𝑍

𝑌

Figure 3: 3D string diagram of interchange law 𝑓 ⊗ 𝑖𝑑 (𝑊) ∘ 𝑖𝑑 (𝑋) ⊗ 𝑔 ≅ 𝑖𝑑 (𝑌) ⊗ 𝑔 ∘ 𝑓 ⊗ 𝑖𝑑 (𝑍), as 2D slices

20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

𝑛-dimensional string diagrams

Performing this move, we have the diagram from which we started on the left, and the resulting diagram
on the right. This whole process can be thought of as a 3D string diagram, with the central slice
representing the singular moment in which the morphisms 𝑓 and 𝑔 occupy the same height.
[next slide]
The primary interface of our tool is the display and manipulation of 2D slices of these 𝑛-dimensional
string diagrams. To generate this homotopy move, the user would click-and-drag the morphism node
labelled 𝑓 until it is below 𝑔, and the tool responds to either tell the user the move is inadmissible, or
generates a rewrite of diagrams which is then applied to show the new state. In this case, the move is
admissible, so the tool would respond with the diagram contained in the slice in the middle. Another
downward drag on 𝑓 would then complete the interchange, resulting in the diagram on the right.



𝑛-dimensional string diagrams

Figure 4: 3D string diagram of interchange law as 3D geometry

20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

𝑛-dimensional string diagrams

Our tool can render this as this 3D geometry, which is a braid. The user would be able to pan around
this geometry in 3D space.
4D diagrams can also be rendered as an interactive animation of 3D geometry evolving over time.
[back slide]



Recursive encoding of diagrams and rewrites

type frame = int
type generator = { dimension: int; id: int }
type rewrite =

| Rewrite0Identity
| Rewrite0 of { source: generator; target: generator; label: frame }
| RewriteN of { cones: cone list }

and cone = {
index: int;
source: cospan list;
target: cospan;
slices: rewrite list;

}
and cospan = { forward: rewrite; backward: rewrite }
type diagram =

| Diagram0 of generator
| DiagramN of { source: diagram; cospans: cospan list }20

24
-0

4-
16

homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

Recursive encoding of diagrams and rewrites

Here is some pseudocode for the data structures which encode the diagrams and rewrites in homotopy.io.
Diagrams and rewrites are defined recursively, and we use lightweight dependent typing to distinguish
between the zero and higher-dimensional cases.
Diagrams are either 0-dimensional, consisting of a single generator (which is essentially a name), or
higher-dimensional, consisting of a source diagram and a list of cospans which iteratively forwards and
backwards rewrite that source to the target.
A rewrite between 0-dimensional diagrams is either the identity or a map between 0-diagrams which carries
some framing data. This framing data is like a direction of the rewrite with respect to its coordinate
system in 𝑛-dimensional space, for example something like north-to-south in 2D, and is used internally for
generating the coherently-invertible structure and also plays a role in typechecking. A rewrite between
(𝑛 + 1)-dimensional diagrams is a list of cones, which sparsely encodes a collection of rewrites between
𝑛-dimensional diagrams in its slices field. In an 𝑛-dimensional string diagram, for any given point the
surrounding local piece of diagram is likely to be the identity, and it is these pieces of topology which are
elided by the cone encoding. This is analogous to how an adjacency list representation of a directed
graph sparsely records the edge relation as opposed to an adjacency matrix.



Example 2D diagram encoding

⤳

Figure 5: Encoding a 2D string diagram (reutterHighlevelMethodsHomotopy2019)20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

Example 2D diagram encoding

Let’s move to a worked example.
This picture on the left is a 2D string diagram. Scanning horizontally up and down the page, each
horizontal slice itself is a 1D string diagram. The very first slice 𝑟0, from the bottom, intersects 3 of the
vertical wires in the string diagram (hence the marking 3 on the right), and is indistinguishable from its
neighbours until the slice marked 𝑠0 is reached - this is where something happens in the diagram. The
same is true above 𝑠0 until 𝑠1 is reached, and so on. We use this to stratify the diagram into singular
levels, which have intervening regular levels and rewrites of 1D diagrams between them. Now, using our
encoding, this 2D diagram is given by the 1D diagram determining its source on the bottom, along with
this collection of rewrites which arrange into an iterated cospan.
[back slide]



Example 2D diagram encoding

Figure 6: ?? wireframe, with explicit rewrites20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

Example 2D diagram encoding

This picture makes all the underlying 0-dimensional diagrams and rewrites which constitute the diagram.
It’s not shown in the picture, but typically one would want to work with diagrams with respect to some
signature, i.e. one in which each of these points have some kind of type information attached to them.
For instance, this central point on the monoid-shaped thing might have its generator associated to an
algebraic symbol 𝑚, and the points along the wire may be associated to a symbol 𝐴, and in this sense
this piece of diagram would encode a monoid 𝑚 with carrier 𝐴. Framing data has also been omitted
from the picture, but for example it allows for the rewrites constituting both legs of the monoid to be
distinguished.



Contraction

𝑟2 [2] [2] 𝑟′1

𝑠1 [2]

𝑟1 [2] [2] 𝑠′0

𝑠0 [2]

𝑟0 [2] [2] 𝑟′0

𝑓0

𝑏0

𝑓1

𝑏1

𝑐0

𝑐1

𝑐0 ∘ 𝑓0

𝑐1 ∘ 𝑏1

Figure 7: Contracting the two-bead diagram20
24

-0
4-

16
homotopy.io: a proof assistant for finitely-presented globular 𝑛-categories

Contraction

I’d just like to give a bit of the flavour of the kind of algorithmic tools we have in homotopy.io. We call
the move which is obtained from starting with the diagram on the left and either clicking-and-dragging
the bottom-left bead upwards, or the top-right bead downwards. This is because it shrinks the height of
this diagram — on the left, we have two singular levels, and on the right we have 1 singular level. What
this algorithm does is it computes some kind of colimit of the iterated cospan on the left, which would
be the only singular level of the diagram on the right, and then reconstructs the rest of the right-side
diagram, and also the 2D rewrite which goes from left-to-right. The fact that it’s a colimit means that
this is the canonical way to shrink the diagram, and it doesn’t always exist because some contraction
moves won’t be admissible.
A more detailed description of what this algorithm does is in the paper, but essentially it, like most of
our important algorithms, is an algorithm which is recursive on diagram dimension — and this partly
motivates the algebraic datatypes we chose on the previous slides to encode diagrams and rewrites.
Handwaving a lot, there is some strongly-connected component calculation on some directed graph which
underlies this diagram on the left, which generates the correct shape of the desired colimit, and then this
would be correctly filled with typing information on each node and edge whenever the contraction move
exists.


