
Visualising program dataflow with string diagrams
S-REPLS 13 / Fun in the Afternoon

Nick Hu Alex Rice Calin Tataru Dan Ghica

Huawei Programming Languages Research Centre Edinburgh

2023-11-01





String diagrams
▶ String diagrams are a graphical notation for terms in different

types of monoidal categories
▶ The term (𝑓 ⊗ id) ∘ (id ⊗ 𝑔) is represented by the string diagram:

𝑓

𝑔

▶ Equations of terms arising from the monoidal structure are
captured by isotopy of string diagrams

▶ Cartesian monoidal categories (i.e. ⊗ = × and 𝐼 = 1) admit a
natural copy-delete comonoid:

∀f.
f

=

f f



sd-lang

▶ Toy language for programs
▶ Syntax: essentially lambda calculus with operations and

recursive let
▶ bind x = v1 y = v2 … in v
▶ values are variables, thunks, or operations op(v1, v2, …)

▶ plus(x, y), eq(x, y), if(cond, tb, fb), etc.
▶ Semantics: hierarchical hypergraphs

▶ a model of string diagrams for symmetric monoidal categories
with copy-delete

▶ (D. R. Ghica, Muroya, and Ambridge 2021)



Example: factorial

bind fact = lambda(x .
if(eq(x, 0),

1,
times(x,

app(fact,
minus(x, 1)

)
)

)
)
in app(fact, 5)

1

-

1 @

= 1 ×

if

λ

5

@

Figure 1: factorial as a string diagram



Example: factorial

bind fact = lambda(x .
if(eq(x, 0),

1,
times(x,

app(fact,
minus(x, 1)

)
)

)
)
in app(fact, 5)

1

-

1 @

= 1 ×

if

λ

5

@

Figure 1: factorial as a string diagram



Representation of programs
Traditional representation: abstract syntax tree

bind("fact",
lambda("x",

if(eq("x", 0),
1,
times("x",

app("fact",
minus("x", 1)

)
)

)
),
app("fact", 5)

)

bind

”fact” lambda

”x” if

eq

”x” 0

1 times

”x” app

”fact” minus

”x” 1

app

”fact” 5

Compiler optimisations are described by semantic-preserving
transformations on these ASTs given by rewrite rules.



Representation of programs
Traditional representation: abstract syntax tree

bind("fact",
lambda("x",

if(eq("x", 0),
1,
times("x",

app("fact",
minus("x", 1)

)
)

)
),
app("fact", 5)

)

bind

”fact” lambda

”x” if

eq

”x” 0

1 times

”x” app

”fact” minus

”x” 1

app

”fact” 5

Compiler optimisations are described by semantic-preserving
transformations on these ASTs given by rewrite rules.



Representation of programs
Traditional representation: abstract syntax tree

bind("fact",
lambda("x",

if(eq("x", 0),
1,
times("x",

app("fact",
minus("x", 1)

)
)

)
),
app("fact", 5)

)

bind

”fact” lambda

”x” if

eq

”x” 0

1 times

”x” app

”fact” minus

”x” 1

app

”fact” 5

Compiler optimisations are described by semantic-preserving
transformations on these ASTs given by rewrite rules.



ASTs do not support sharing, or 𝛼-equivalence I

Consider the expression (𝑥 + 1) + (𝑥 + 1) (where 𝑥 is free).

This is represented by the sd-lang expression

plus(plus(x, 1), plus(x, 1))

Its AST is

plus

plus

x 1

plus

x 1



ASTs do not support sharing, or 𝛼-equivalence II

Problem: The term obtained by the 𝛼-invariant substitution
[𝑥 ↦ 𝑦] is represented by a different AST.

Consequence: The optimisation plus(𝑥1, 𝑥2) → times(𝑥1, 2)
needs to do a non-trivial computation to be valid, namely checking
that 𝑥1 ≡𝛼 𝑥2.

▶ Can leverage de Bruijn indices, nominal techniques…



String diagrams do support sharing, and 𝛼-equivalence
Our string diagrams are equipped with a natural copy-delete
comonoid.

This allows for a more meaningful representation of this program as
the string diagram:

1 1

+ +

+

Figure 2: (𝑥 + 1) + (𝑥 + 1) — observe that 𝑥 does not appear in the
diagram!

Nodes represent operations, and edges represent dataflow (e.g. of
values)!



ASTs do not support binding and shadowing

Another way to write this program:

bind y = plus(x, 1) in plus(y, y)

AST:

bind

y plus

x 1

plus

y y



ASTs vs string diagrams

AST String diagram

plus

plus

x 1

plus

x 1

1 1

+ +

+

bind

y plus

x 1

plus

y y

+

1

+



Compiler optimisations as string diagram rewriting

The optimisation we care about is

+
=

×

2

Derive

1 1

+ +

+

=
1 1

+ +

+

=
+

1

+

= +

1

+

=
×

2

+

1



Compiler optimisations as string diagram rewriting

The optimisation we care about is

+
=

×

2

Derive

1 1

+ +

+

=
1 1

+ +

+

=
+

1

+

= +

1

+

=
×

2

+

1



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



An aside on graphs

▶ Graphs are also used in production compilers to sidestep these
issues

▶ 3 They also convey information efficiently, and naturally
support sharing

▶ 7 They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

▶ String diagrams can be thought of as an intermediate
representation between ASTs and graphs

▶ 3 Have enough graphical structure to support sharing and
𝛼-equivalence

▶ 3 They are algebraic, as they represent terms of some kind of
monoidal category

▶ 3 Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

▶ 7 (3?) Not very well studied, lack of tooling(!)



How to draw a string diagram

▶ Hypergraphs quotient monoidal categories with copy-delete
▶ For each hypergraph, we need to pick a representative

monoidal term
▶ Involves (non-canonically) foliating the hypergraph into layers,

and determining the order of operations (which determines how
many ‘swaps’ are needed)

▶ Aesthetically-pleasing diagram heuristic: minimise the number
of layers, and the number of swaps (NP-hard)

▶ Given a monoidal term, we can construct a big LP to
determine the coordinates of each node and positioning of
edges (Tataru and Vicary 2023)



Demo

▶ Also available at https://sd-visualiser.github.io/sd-visualiser

https://sd-visualiser.github.io/sd-visualiser


Future work and references

▶ LLVM’s Multi-Level Intermediate Representation (MLIR)

References
Ghica, Dan R., Koko Muroya, and Todd Waugh Ambridge. 2021.

“A Robust Graph-Based Approach to Observational Equivalence.”
September 23, 2021. https://doi.org/10.48550/arXiv.1907.0125
7.

Ghica, Dan, and Fabio Zanasi. 2023. “String Diagrams for 𝜆-
Calculi and Functional Computation.” October 19, 2023. https:
//doi.org/10.48550/arXiv.2305.18945.

Tataru, Calin, and Jamie Vicary. 2023. “A Layout Algorithm for
Higher-Dimensional String Diagrams.” May 11, 2023. https:
//doi.org/10.48550/arXiv.2305.06938.

https://doi.org/10.48550/arXiv.1907.01257
https://doi.org/10.48550/arXiv.1907.01257
https://doi.org/10.48550/arXiv.2305.18945
https://doi.org/10.48550/arXiv.2305.18945
https://doi.org/10.48550/arXiv.2305.06938
https://doi.org/10.48550/arXiv.2305.06938

