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String diagrams

P> String diagrams are a graphical notation for terms in different
types of monoidal categories

P The term (f ®id) o (id ® g) is represented by the string diagram:

P Equations of terms arising from the monoidal structure are
captured by isotopy of string diagrams

P> Cartesian monoidal categories (i.e. ® = x and [ = 1) admit a
natural copy-delete comonoid:

A



sd-lang

P Toy language for programs
P Syntax: essentially lambda calculus with operations and
recursive let
}bindx=v1y=v2...inv
P values are variables, thunks, or operations op(vl, v2, ..)
| 4 plus(x, y), eq(x, y), if(cond, tb, £fb), etc.

P Semantics: hierarchical hypergraphs

P a model of string diagrams for symmetric monoidal categories

with copy-delete

> (D. R. Ghica, Muroya, and Ambridge 2021)



Example: factorial

bind fact = lambda(x .

if(eq(x, 0),
1,
times (x,
app(fact,
minus(x, 1)

)
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Figure 1: factorial as a string diagram



Representation of programs

Traditional representation: abstract syntax tree
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Representation of programs

Traditional representation: abstract syntax tree

bind("fact", bind
lambda("x", / /
if (eq("x", 0), "fact” lambda app

L, A /\

times("x", X if "fact” 5
app("fact", / | \
minus("x", 1) eq 1 times
) /\ /\
) e 0 "' app
) / N\
), (fact 5 "fact” minus
app("fact", /\

) "xT 1

Compiler optimisations are described by semantic-preserving
transformations on these ASTs given by rewrite rules.



ASTs do not support sharing, or a-equivalence |

Consider the expression (z + 1) + (z + 1) (where z is free).
This is represented by the sd-lang expression
plus(plus(x, 1), plus(x, 1))

Its AST is

plus

VRN

plus plus



ASTs do not support sharing, or a-equivalence Il

Problem: The term obtained by the a-invariant substitution
[x > y] is represented by a different AST.

Consequence: The optimisation plus(zy,z5) — times(x,2)
needs to do a non-trivial computation to be valid, namely checking
that z; =, z5.

P Can leverage de Bruijn indices, nominal techniques...



String diagrams do support sharing, and a-equivalence
Our string diagrams are equipped with a natural copy-delete
comonoid.

This allows for a more meaningful representation of this program as
the string diagram:

Figure 2: (x + 1) + (x + 1) — observe that = does not appear in the
diagram!

Nodes represent operations, and edges represent dataflow (e.g. of
values)!



ASTs do not support binding and shadowing

Another way to write this program:
bind y = plus(x, 1) in plus(y, y)
AST:

bind

AN

Yy~ plus plus
/ \1 / N\

Yy Y



ASTs vs string diagrams

AST

String diagram

plus




Compiler optimisations as string diagram rewriting

The optimisation we care about is



Compiler optimisations as string diagram rewriting

The optimisation we care about is




An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

P> String diagrams can be thought of as an intermediate
representation between ASTs and graphs



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

P> String diagrams can be thought of as an intermediate

representation between ASTs and graphs
P / Have enough graphical structure to support sharing and
a-equivalence



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

P> String diagrams can be thought of as an intermediate
representation between ASTs and graphs
P / Have enough graphical structure to support sharing and
a-equivalence
P / They are algebraic, as they represent terms of some kind of
monoidal category



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

P> String diagrams can be thought of as an intermediate
representation between ASTs and graphs

P / Have enough graphical structure to support sharing and
a-equivalence

P / They are algebraic, as they represent terms of some kind of
monoidal category

P / Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)



An aside on graphs

P> Graphs are also used in production compilers to sidestep these
issues
P / They also convey information efficiently, and naturally
support sharing
P> X They are not algebraic: no inductive structure, hard to reason
about and distil algorithms which preserve invariants

P> String diagrams can be thought of as an intermediate
representation between ASTs and graphs

P / Have enough graphical structure to support sharing and
a-equivalence

P / They are algebraic, as they represent terms of some kind of
monoidal category

P / Support a natural theory of rewriting via double-pushout
graph rewriting (corresponding to equipping the monoidal
category with equations)

P X (/7) Not very well studied, lack of tooling(!)



How to draw a string diagram

P Hypergraphs quotient monoidal categories with copy-delete
P> For each hypergraph, we need to pick a representative
monoidal term
P Involves (non-canonically) foliating the hypergraph into layers,
and determining the order of operations (which determines how
many ‘swaps’ are needed)
P Aesthetically-pleasing diagram heuristic: minimise the number
of layers, and the number of swaps (NP-hard)
P Given a monoidal term, we can construct a big LP to
determine the coordinates of each node and positioning of
edges (Tataru and Vicary 2023)



Demo

P> Also available at https://sd-visualiser.github.io/sd-visualiser


https://sd-visualiser.github.io/sd-visualiser

Future work and references

P LLVM's Multi-Level Intermediate Representation (MLIR)
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