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Abstract
The simply-typed 𝜆-calculus provides a basis for modern-day typed functional programming lan-

guages like Haskell; however, it is not immediately clear what the mathematical meaning of such a
structure is. Lambek and Scott showed that one way to naturally capture the meaning is with the notion
of Cartesian closed category. We analyse one such approach, first developing an algebraic theory of
simply-typed 𝜆-calculus, and then attributing to it a categorical model. Then we develop a soundness
theorem, to substantiate the claim that such amodel is valid. Finally, we develop a completeness theorem:
for every theory there exists a ‘minimal’ unique category which models it. We discuss at length the
proposition that the simply-typed 𝜆-calculus is the same as Cartesian closed categories.

i



Contents

Contents ii
1 Introduction 1
1.1 The meaning of computer programs 1
1.2 The substance of computer programs 2
1.3 This project 3
1.3.1 Contribution and outline 4
2 𝜆-calculus 5
2.1 Syntax 5
2.2 Typed terms 8
2.3 Properties of 𝜆-calculi 11
2.4 𝜆�×-theories 12
3 Categorical semantics 16
4 Categorical type theory correspondence 21
4.1 Soundness 21
4.2 Completeness 24
4.2.1 Syntactic category 26
4.2.2 Category of models 30
4.2.3 Categorical equivalence 36
5 Conclusion 40
5.1 Further work 40
A Cartesian Closed Categories equationally 41
B Proofs 46
References 64
Index 66

ii



Cartesian closed categories and the simply-typed 𝜆-calculus 1

1 INTRODUCTION

In the most general sense, a computer program is a structured collection of instructions which yield
some result by computation. Here is an example:

Listing 1. A basic factorial functional program.

factorial : nat → nat

factorial 0 = 1

factorial n = n * factorial (n-1)

Wemight describe the program itself as a syntactic object (a string of text and symbols), which contains
computational content (a procedure to compute the factorial function). Intuitively, as programmers, we
know that this is notionally the same as the factorial function on natural numbers; that is, a mapping

! ∶ ℕ ⟶ ℕ
𝑛 ⟼ 𝑛 × (𝑛 − 1) × ⋯ × 1

which we describe as a denotation — a mathematical object associated to the program from before. In
this project, we will explore certain denotations of certain programs.

1.1 The meaning of computer programs

Formal semantics of programming languages concerns itself with using formal mathematics to interpret
the meaning of programming languages: broadly speaking, it gives us a semantics to understand the
syntax of a given language. There are three main methodologies in this field:

Axiomatic semantics starts with observing the syntax, and attributing properties to program
fragments, defined in some program logic. Assertions (invariants) about such properties which
hold under every execution form the base of the semantics, and proofs of correctness utilise only
those assertions to give an argument independent of any underlying implementation details. Two
different implementations of the same algorithm — which are subject to the same assertions —
are considered semantically the same, even if they have vastly different running times or resource
requirements1.
This approach was invented by Robert Floyd (1967), and popularised by Hoare (1969). Given
assertions𝑃 and𝑄 and program fragment 𝑆, define a (Floyd-)Hoare triple to be such that {𝑃} 𝑆 􏿺𝑄􏿽
is the assertion that if 𝑆 is executed beginning with a state where 𝑃 holds, then once 𝑆 finishes
executing, 𝑄 holds. In this case, we describe 𝑃 as a precondition and 𝑄 as a postcondition. Such
statements form the basis of Hoare logic, which we can use as program logic; following this, we
give an axiomatic semantics for the while construct commonly used in imperative programs:

{𝐼 ∧ 𝐺} 𝐵 {𝐼}
{𝐼} while 𝐺 do 𝐵 end {𝐼 ∧ ¬𝐺}

This compactly states that if loop body 𝐵 preserves the loop invariant 𝐼 when the loop guard 𝐺 is
true, then we may infer that while 𝐺 do 𝐵 end when executed from an initial state where the
loop invariant is true will (assuming termination) finish in a state where the invariant is still true,
but also the loop guard is false. For more on axiomatic semantics, consult Slonneger & Kurtz
(1995).

Operational semantics is about modelling the execution itself of a program. States of execution
are mapped onto some abstract formalism, for example an automaton, which then interprets
the program as a valid sequence of computation steps. Examples of this approach date back to

1Such concerns fall under the classification of computational dynamics ; most forms of semantics make identifications between
notionally equivalent expressions even if they contain different amounts of computational content, in the same way that most
mathematicians identify 2 + 2 with 4.
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McCarthy (1960), who used the 𝜆-calculus2 to give an operational interpretation of the LISP
programming language. Another instance of this approach is the derivation of a Control En-
vironment (K)ontinuation (CEK) machine (Felleisen & Friedman 1986) by the application of
defunctionalisation to the continuation-passing-style transformation of a definitional interpreter
— such a formalism provides an abstract stack machine which interprets the language of the
definitional interpreter (Reynolds 1972). An introduction to the topic of operational semantics is
given in Hennessy (1990), and also in a lot more detail in Pierce (2002).

Denotational semantics is the method most relevant to this dissertation. Originally called ‘math-
ematical semantics’ or ‘Scott-Strachey semantics’, this approach revolves around finding math-
ematical objects (denotations) J𝐸K to associate to expressions 𝐸 of the language3. A collection of
denotations is called a semantic domain .
Compositionality is key, and the denotation of any expression should in someway be the composite
of the denotations of its subexpressions. Considering Listing 1, we might concoct the following
denotational semantics to match our intuition:

JnatK = ℕ nat type modelled by the natural numbers;
J0 : natK = J0K ∈ JnatK = 0 ∈ ℕ each term of type nat is modelled by
J1 : natK = J1K ∈ JnatK = 1 ∈ ℕ its corresponding natural number;

J* : nat → nat → natK = J*K ∈ Jnat → nat → natK

= J*K ∈ JnatK ⇒ Jnat → natK

= J*K ∈ ℕ ⇒ JnatK ⇒ JnatK *modelled by multiplication
= × ∈ ℕ ⇒ ℕ ⇒ ℕ × on naturals;

J- : nat → nat → natK = − ∈ ℕ ⇒ ℕ ⇒ ℕ and similarly for subtraction;

but now we get stuck as factorial is an impredicative definition (it uses itself in its definition),
so it isn’t clear how to proceed with our naïve set-theoretic approach. Moreover, the view that
terms should be interpreted by set-theoretic functions is not quite precise: let nat be the only
base type, interpreted by the setℕ of natural numbers; then the natural interpretation for the
type nat → nat is the function space ℕ ⇒ ℕ — however, ℕ ⇒ ℕ is uncountably infinite
yet we can only construct countably many terms of type nat → nat, so there necessarily exists
elements in our model that are not denotations of any term. Famously, Dana Scott solved both
problems with the introduction of Scott domains (directed-complete partially ordered sets) to
interpret types and (Scott-)continuous functions to interpret terms (1970).
Another key concept of this approach is the independence of semantics from syntax. To paraphrase
Stoy (1977 pp. 9–10), the 𝜆-calculus is really just machinery for the syntactic manipulation of
symbols with no meaning; to solve any real problem, a semantic interpretation is necessary (as
above), and it is nontrivial to prove that such an approach ‘makes sense’.

In particular, we focus on categorical semantics, which is a generalisation of denotational semantics
to the semantic domain of categories.

1.2 The substance of computer programs

Previously, we have been discussing ‘computer programs’ as an abstract notion, without a handle which
we can grasp. Over decades of development of computability theory in the 20th century, it became

2At that time, the crisis of ‘what is the mathematical meaning of the 𝜆-calculus’ had been somewhat resolved.
3The ‘semantic brackets’ notation J−K is commonly used in the wider literature to signify the denotation of an expression.
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known that a function is partial recursive if and only if it is 𝜆-definable (Turing 1937a) if and only if it
is Turing computable (Turing 1937b), culminating in the Church-Turing thesis:

the informal notion of ‘effectively calculable’, i.e. that which can be calculated by some device
or algorithm, coincides exactly with the partial recursive functions.

We will refer to such a class of functions as computable.
The ‘nicest class’ of computer programs are arguably those that are referentially transparent, as they

admit this compositionality property rather easily, in the sense that Stoy (1977 p. 5) describes as
1. the importance of an expression is solely its value,
2. subexpressions can be replaced by any expression of equal value,
3. generally, the value of a fixed expression is the same at each evaluation.
These observations parallel general mathematics, and allow for equational reasoning4. Such programs

are described as ‘functional’, to wit simple programs are functions5, which we compose to construct
large programs (ultimately, bigger and more complex functions). Through the work of Plotkin (1977),
we came to understand the (simply-typed) 𝜆-calculus as the prototypical functional programming
language, with Programming Computable Functions (PCF) bridging the gap between it and modern
real-world functional programming languages like Haskell and the ML-family of languages.

simply-typed 𝜆-calculus PCF Haskellis an extended is a simplified

Fig. 1. The relationship between the simply-typed 𝜆-calculus, PCF, and Haskell.

𝜆-calculus is a richly developed field of study in its own right, which the classic text Barendregt’s ‘The
Lambda Calculus: Its Syntax and Semantics’ illustrates (1984). For our purposes, it is sufficient to treat
the (simply-typed) 𝜆-calculus as a simplified notion of what is a ‘computer program’.

1.3 This project

Oxford has been somewhat central inmany of the developments of the formal semantics of programming
languages that we have discussed, and this is reflected in modern times by its teaching. Many of the
courses offered by the Department of Computer Science touch on key themes in this dissertation;
roughly ordered by complexity, the following courses provide useful material to our discussion:

Functional Programming — an introductory course covering equational reasoning with Haskell,
establishing basic mathematical techniques like structural induction.

Imperative Programming I — an introductory course covering axiomatic semantics by using
invariants to reason about the correctness of imperative programs.

Principles of Programming Languages — a course on the operational semantics of programming
languages, following Reynolds’s seminal paper ‘Definitional interpreters for higher-order program-
ming languages’ (1972). Other themes include the use of monads (as equational structure) to
encapsulate computational effects, like memory or continuation-passing.

Lambda Calculus and Types — a course on the 𝜆-calculus, its developments to the fields of term-
rewriting, computability theory, combinatory logic, and type theory. Many key results of the
course are presented in Section 2.3.

Categories, Proofs, and Processes — a first course on category theory, and a tour of some of its
applications to computer science. Also introduces the Curry-Howard-Lambek correspondence.

4Mathematicians often work in the general setting of first-order logic with equality where equational reasoning can be taken for
granted, sidestepping any philosophical considerations.
5In the sense of a deterministic well-defined mapping from inputs to outputs rather than a set-theoretic notion.
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Further category theory is introduced as needed.

1.3.1 Contribution and outline. The main contribution of this dissertation is the full development of the
central ideas of soundness and completeness of categorical semantics for the simply-typed 𝜆-calculus,
largely following Crole (1993 Chapter 4). We present an entirely formal and rigorous approach, with
no proofs omitted. In particular, our construction for the classifying category is simpler, being based
on closed terms rather than terms-in-contexts, where the context is a singleton — this construction is
cleaner, albeit at the expense of introducing some currying into the proofs regarding it. In addition, we
pay meticulous care to the consideration of non-strict Cartesian closed/product-preserving functors,
especially in the discussion of results about model-translating functors (Definition 4.14).

This is done in two parts: we first establish the syntax we are working with in Section 2, in the form
of 𝜆�×-theories. Then, in Section 3, we present a semantics for such theories in the form of Cartesian
closed category. Section 4 is the main technical content of this dissertation, split into covering soundness
in Section 4.1, and completeness in Section 4.2. Completeness requires much more machinery to
adequately develop: first, we talk about syntactic categories which are freely constructed by 𝜆�×-theories
(Section 4.2.1); then we discuss how the collection categorical models of a 𝜆�×-theory themselves have
categorical structure (Section 4.2.2); in Section 4.2.3, we combine the machinery together to establish
the completeness result.

The reader should keep in mind the question of ‘to what extent are simply-typed 𝜆-calculi the same
as Cartesian closed categories’ throughout, as this is our central theme.

TEXcount word count: 9753
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2 𝜆-CALCULUS
In this section, we develop the 𝜆-calculus necessary to give a syntax to talk about programs. An
appropriate collection of this syntax will be the subject of our semantic modelling.

The 𝜆-calculus was invented by Alonzo Church to be a formal system for the foundations of logic,
centred around the primitive notion of function rather than set, first published in (1932). Somewhat
serendipitously, the notion of 𝜆-definable function turned out to be extremely expressive, and this
ultimately lead to the Church’s famous thesis in computability (Section 1.2). Another great achievement
of the era was the first proof of a negative result for Hilbert’s Entscheidungsproblem6, opening up the
realm of the undecidable (Church 1936).

In the 1950s–1960s, the 𝜆-calculus began to draw the attention of computer scientists, notably in-
fluencing John McCarthy’s LISP (1960). Moreover, the idea that 𝜆-calculus could be the prototypical
(functional) programming language was further developed by Böhm, resulting in the CUCH pro-
gramming language, which combined CUrry’s combinatory logic with CHurch’s 𝜆-calculus (1966).

The history and relevance of the 𝜆-calculus is an enormous topic; far too much to recount in this
project — an excellent review is contained in Cardone & Hindley (2006).

2.1 Syntax

We formalise the 𝜆-calculus as a mathematical formal theory.

Definition 2.1 (𝜆�×-signature). A 𝜆�×-signature, 𝜎, is given by the following data:
• Fix a set TV of ground types. The collection of simple types over TV, ST (TV), is defined by the

following BNF:

ST (TV) ∶ 𝐴 ⩴ 𝐺 ∣ unit ∣ 𝐴 → 𝐴 ∣ 𝐴 × 𝐴 where 𝐺 ∈ TV.

• A collection of function symbols, each with arity a natural number. If 𝑓 is a 𝑛-ary function symbol,
such that 𝑛 > 0, it is associated to a mapping 𝑓∶ 𝐴1 ×⋯ × 𝐴𝑛 → 𝐵. A 0-ary function symbol 𝑐 is
associated to a type, 𝑐∶𝐵, and this is described as the constant 𝑐 of type 𝐵. We use 𝑐 to mean 𝑐() in
the context of function application when it is clear from context.

Definition 2.2 (𝜆-terms). The collection of raw terms generated by 𝜎,Λ, assuming a countably infinite
set V of variables, is defined as:

Λ∶ 𝑡 ⩴ 𝑥 ∣ 𝑓 (𝑡, … , 𝑡)􏿋􏻰􏻰􏿌􏻰􏻰􏿍
𝑛 times

∣ 𝜆𝑥∶𝐴.𝑡 ∣ 𝑡𝑡 ∣ ⟨⟩ ∣ ⟨𝑡, 𝑡⟩ ∣ fst (𝑡) ∣ snd (𝑡) ,

where 𝑥 ∈ V, and 𝑓 is a 𝑛-ary function symbol.

A raw term can be thought of as a syntactically valid expression which may be ill-typed. Function
symbols can be thought of as primitive functions with a meaning outside of the theory, while function
types are the core construction integral to simply-typed lambda calculi. Product types can be encoded
with function types, but for a nice parallel with Cartesian closed categories (preserving the categoricity
of product), we include them as part of the signature.

Every variable appears either free, or bound by some 𝜆-abstraction, and terms are identified modulo
renaming of bound variables.More formally, we define the subterm relation⊂ over raw terms inductively.

Definition 2.3 (Subterms). For terms 𝑠, 𝑡, 𝑢, 𝑣 ∈ Λ and 𝑥 ∈ V:

6Given a formula of first-order logic, is it valid? That is, does every assignment of variables to truth values make the whole formula
true?
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𝑡 ⊂ 𝑡
∃1 ≤ 𝑖 ≤ 𝑛.𝑠 ⊂ 𝑡𝑖 𝑓 is an 𝑛-ary function symbol
𝑠 ⊂ 𝑓(𝑡1, … , 𝑡𝑛)

𝑠 = 𝑥 ∨ 𝑠 ⊂ 𝑡
𝑠 ⊂ 𝜆𝑥∶𝐴.𝑡

𝑠 ⊂ 𝑡
𝑠 ⊂ fst (𝑡)

𝑠 ⊂ 𝑡
𝑠 ⊂ snd (𝑡)

𝑡 ⊂ 𝑢 ∨ 𝑡 ⊂ 𝑣
𝑡 ⊂ 𝑢𝑣

𝑡 ⊂ 𝑢 ∨ 𝑡 ⊂ 𝑣
𝑡 ⊂ ⟨𝑢, 𝑣⟩

Notice that constants and ⟨⟩ are atomic.

Now, for subterms of the form 𝜆𝑥∶𝐴.𝑡, we describe 𝑡 as the scope of the binding 𝜆𝑥∶𝐴 and 𝑥 as a bound
variable in scope. If 𝑥 was already bound, then it is rebound in the tightest enclosing scope and this is
described as variable capture.

Example 2.4. In the term
𝜆𝑥∶𝐴.(𝜆𝑥∶𝐴.𝑣𝑥),

𝑥 has been captured by the innermost 𝜆-abstraction, and is a distinct variable to 𝑥. A term with equal
‘meaning’ (but not identical syntax) is 𝜆𝑥∶𝐴.(𝜆𝑧∶𝐴.𝑣𝑧), and we seek to establish an identification of the
two.

Free variables are the variables which do not appear bound at the top level (largest scope) of the raw
term, and can be given inductively as follows.

Definition 2.5 (Free variables). The set of free variables of a term 𝑡, fv (𝑡), is defined inductively:

fv (𝑐) = fv (⟨⟩) ≔ ∅, 𝑐 is a constant,
fv (𝑥) ≔ {𝑥} , 𝑥 ∈ V,

fv (𝑢𝑣) = fv (⟨𝑢, 𝑣⟩) ≔ fv (𝑢) ∪ fv (𝑣) ,
fv (𝜆𝑥∶𝐴.𝑡) ≔ fv (𝑡) ⧵ {𝑥} ,

fv 􏿴fst (𝑡)􏿷 = fv 􏿴snd (𝑡)􏿷 ≔ fv (𝑡) .

Example 2.6. In the term
𝑡 = (𝜆𝑥∶𝐴􏿄

†

. 𝑢𝑥⏟
∗

)(𝑦𝑥), 𝑥, 𝑦 ∈ V

𝑦 appears free, but 𝑥 appears both bound (left and middle occurrences) and free (right occurrence).
Moreover, 𝑥 appearing in the scope (∗) is captured by the innermost 𝜆-abstraction (†). Variable capture
is problematic when we come to define substitution, so we first formalise a notion of relating terms
which are not syntactically equal, but have the same ‘meaning’.

Definition 2.7 (𝛼-equivalence). We define a relation on raw terms 𝛼= inductively

𝑥 ∈ V𝑥 =𝛼 𝑥
𝑐 is a constant𝑐 =𝛼 𝑐

𝑡1 =𝛼 𝑡′1 … 𝑡𝑛 =𝛼 𝑡′𝑛 𝑓 is a 𝑛-ary function symbol
𝑓(𝑡1, … , 𝑓𝑛) =𝛼 𝑓(𝑡′1, … , 𝑡′𝑛)

𝑢 =𝛼 𝑢′ 𝑣 =𝛼 𝑣′

𝑢𝑣 =𝛼 𝑢′𝑣′

𝑡[𝑦/𝑥] =𝛼 𝑡′[𝑦/𝑥′] 𝑥, 𝑦 ∈ V, and 𝑦 does not appear in 𝑡𝑡′
𝜆𝑥∶𝐴.𝑡 =𝛼 𝜆𝑥′∶𝐴.𝑡′

⟨⟩ =𝛼 ⟨⟩
𝑢 =𝛼 𝑢′ 𝑣 =𝛼 𝑣′

⟨𝑢, 𝑣⟩ =𝛼 ⟨𝑢′, 𝑣′⟩
𝑡 =𝛼 𝑡′

fst (𝑡) =𝛼 fst (𝑡′)
𝑡 =𝛼 𝑡′

snd (𝑡) =𝛼 snd (𝑡′)
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𝛼-equivalence can be thought of as the renaming of bound variables preserving semantics, and will
allow us to conveniently ignore concerns regarding variable capture (as we can always 𝛼-convert to an
equivalent term for which variable capture would not occur, and V is countably infinite so we do not
‘run out’ of variables). This forms an equivalence class overΛ, and we shall refer to the representatives of
elements of Λ/=𝛼 as terms. In doing this, we emphasise that we do not distinguish between 𝛼-equivalent
raw terms.

Definition 2.8 (Substitution). For a term 𝑡 and a variable 𝑥, substitution is defined inductively:

𝑦[𝑡/𝑥] ≔

⎧⎪⎪⎨
⎪⎪⎩
𝑡, if 𝑦 = 𝑥
𝑦, if 𝑦 ≠ 𝑥

𝑦 ∈ V

𝑐[𝑡/𝑥] ≔ 𝑐, 𝑐 is a constant
𝑓(𝑡1, … , 𝑡𝑛)[𝑡/𝑥] ≔ 𝑓(𝑡𝑖[𝑡/𝑥], … , 𝑡𝑛[𝑡/𝑥]), 𝑓 is a 𝑛-ary function symbol

(function types)
(𝜆𝑧∶𝐴.𝑢)[𝑡/𝑥] ≔ 𝜆𝑧∶𝐴.𝑢[𝑡/𝑥], (⋆)

(𝑢𝑣)[𝑡/𝑥] ≔ 𝑢[𝑡/𝑥]𝑣[𝑡/𝑥],
(product types)

⟨⟩[𝑡/𝑥] ≔ ⟨⟩, ⟨𝑢, 𝑣⟩[𝑡/𝑥] ≔ ⟨𝑢[𝑡/𝑥]𝑣[𝑡/𝑥]⟩,

fst (𝑢) [𝑡/𝑥] ≔ fst 􏿴𝑢[𝑡/𝑥]􏿷 , snd (𝑢) [𝑡/𝑥] ≔ snd 􏿴𝑢[𝑡/𝑥]􏿷 .

(⋆) is the condition that 𝑧 ∉ fv (𝑡) ∪ fv (𝑥), and can always be satisfied by 𝛼-converting 𝑧 to some
‘fresh’ variable.

Definition 2.9 (𝛽-equivalence). Evaluation is formalised by 𝛽-reduction, a relation→𝛽 defined by

(𝜆𝑥∶𝐴.𝑡)𝑢 →𝛽 𝑡[𝑢/𝑥],
fst (⟨𝑢, 𝑣⟩) →𝛽 𝑢,
snd (⟨𝑢, 𝑣⟩) →𝛽 𝑣,

and we write{𝛽 to be the reflexive transitive closure induced by →𝛽. For terms 𝑢 and 𝑣 such that
𝑢 {𝛽 𝑣, we say that the redex 𝑢 reduces to the contractum 𝑣, and{𝛽 forms a partial order. We take
𝛽-equivalence to be the identification 𝑢 =𝛽 𝑣, whereby there is some 𝑡 such that 𝑢 {𝛽 𝑡 and 𝑣 {𝛽 𝑡.

𝛽-reduction gives a notion of computational dynamics. By this, we mean that 𝛽-equivalent terms have
the ‘same meaning’, but different amounts of computational content in them. For example, in ordinary
arithmetic, we consider 2 + 2 and 4 to be equal, however the former has more computational content
than the latter because we establish the equality by ‘evaluating’ the addition. 𝜆-calculus as an abstract
theory of functions precisely captures this notion of evaluation with 𝛽-reduction and substitutions.

Definition 2.10 (𝜂-equivalence). Similarly to 𝛽-reduction, 𝜂-reduction is a relation→𝜂 defined by

𝜆𝑥∶𝐴.𝑡𝑥 →𝜂 𝑡,
⟨fst (𝑣) , snd (𝑣)⟩ →𝜂 𝑣,

from which a reflexive transitive closure{𝜂 is induced. Like before, we take 𝜂-equivalence to be the
identification 𝑢 =𝜂 𝑣, adding symmetry.

𝜂-reduction formalises the notion that the only thing to be done with a lambda term is application:
consider the reduction

(𝜆𝑥∶𝐴.𝑢𝑥)𝑣 { 𝑢𝑣,
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which can reduce via both 𝛽 or 𝜂 — 𝜂-reduction would ‘anticipate’ the 𝛽 redex that arises when the
lambda term containing 𝑢 is applied to 𝑣. 𝜂-equivalence can give an identification to observationally
equivalent terms7, such as 𝜆𝑦∶𝐴.𝜆𝑥∶𝐴.𝑦𝑥 =𝜂 𝜆𝑥∶𝐴.𝑥. In a sense, 𝜂-reduction is a special case of the
extensionality of functions in our 𝜆-calculus.

Definition 2.11 (𝛽𝜂-equivalence). 𝛽𝜂-reduction { is the transitive closure {𝛽 ∪ {𝜂, and
𝛽𝜂-equivalence =𝛽𝜂 is the transitive closure =𝛽 ∪ =𝜂.

𝛽𝜂-equivalence is the canonical notion of equivalence for lambda terms we consider, capturing
equality modulo computational dynamics. This canonicity is categorical in the sense that 𝛽𝜂-equivalent
terms are identified as equal morphisms in the classifying category, which will be shown later.

2.2 Typed terms

Previously, we have only been considering unityped terms of type𝐴, withoutmuch care, which describes
something equivalent to the untyped 𝜆-calculus (Harper 2016 sec. 21.4) — see also Example 2.34.

The untyped 𝜆-calculus has properties which make it inelegant to model, such as the undecidability
of term equality, emerging due to logical inconsistency when viewed as a logic, as shown by the Kleene-
Rosser paradox (1935). For an example of this sort, consider the following.

Example 2.12 (Russell’s paradox in untyped 𝜆-calculus). Let not be the 𝜆-term corresponding to
logical negation, i.e. if 𝜆-terms are assigned truth values invariant under 𝛽-equivalence, then not(𝑡) is
assigned the negation of the truth value of 𝑡. Observe that 𝐲 = 𝜆𝑓.(𝜆𝑥.𝑓(𝑥𝑥))(𝜆𝑥.𝑓(𝑥𝑥)) is a fixed-point
combinator: a closed 𝜆-term such that for all terms 𝑡,

𝐲𝑡 =𝛽 𝑡(𝐲𝑡).

Then we can derive Russell’s paradox:

𝐲not =𝛽 not(𝐲not).

𝐲not is assigned a truth value as it is a term, but it is 𝛽-equivalent to not(𝐲not) which should be assigned
the same truth value, but due to assumption on not it should be assigned the opposite truth value —
paradox.

One method to resolve this is the introduction of the simply-typed 𝜆-calculus, formulated by Church
(1940) and built on the work of Russell and Whitehead, which restricts the constructible terms to a
‘well-behaved’ strict subset. For instance, no simply-typed theory of the 𝜆-calculus admits fixed-point
combinators.

Types impose a restriction on reduction that prevents pathological behaviour, like self-application.
For instance, a term of type𝐴 → 𝐵may only be applied to terms of type𝐴, eliding the possibility of ever
applying terms which are not morally ‘functions’. Viewing the 𝜆-calculus as an abstract programming
language, the enforcement of well-typing elides the possibility of writing nonsensical (i.e.
ill-typed) terms.

The presentation of the simply-typed 𝜆-calculus here includes additional rules for product types and
terms, which preserve the categoricity of Cartesian product in the model.

We talk about typed terms in relation to a context, defined as follows.

Definition 2.13 (Typing contexts). A typing context is defined by a finite list of pairs of (variable, type)

Γ ≔ [𝑥1∶𝐴1, … , 𝑥𝑛∶𝐴𝑛], (𝑥1, … , 𝑥𝑛 are all distinct)

where 𝑥1, … , 𝑥𝑛 ∈ V, 𝐴1, … , 𝐴𝑛 ∈ ST (TV).
7Two terms 𝑢 and 𝑣 terms are observationally equivalent if and only if for all terms 𝑡, (𝑡𝑢 terminates ⟺ 𝑡𝑣 terminates), where a
term terminates if and only if it cannot reduce infinitely.
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A typing context Γ (sometimes called an environment) binds types to free variables in a term, written
𝜎 ▷ Γ ⊢ 𝑡. We call 𝜎 ▷ Γ ⊢ 𝑡 a term-in-context, and often we omit 𝜎▷ when the signature is clear. We
write + for list append.

Definition 2.14 (Typing relation). We have the following inductive rules for forming types:

var
Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑥 ∶ 𝐴 unit Γ ⊢ ⟨⟩ ∶ unit
const 𝑐 is a constant of type 𝐴

Γ ⊢ 𝑐 ∶ 𝐴
Γ ⊢ 𝑡1 ∶ 𝐴1 … Γ ⊢ 𝑡𝑛 ∶ 𝐴𝑛func 𝑓 is an 𝑛-ary function symbol of type 𝐴1 ×⋯ × 𝐴𝑛 → 𝐵

Γ ⊢ 𝑓(𝑡1, … , 𝑡𝑛) ∶ 𝐵

Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑡 ∶ 𝐵
abs Γ + Γ ′ ⊢ (𝜆𝑥 ∶ 𝐴.𝑡) ∶ 𝐴 → 𝐵

Γ ⊢ 𝑢 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑣 ∶ 𝐴app
Γ ⊢ 𝑢𝑣 ∶ 𝐵

Γ ⊢ 𝑢 ∶ 𝐴 Γ ⊢ 𝑣 ∶ 𝐵pair
Γ ⊢ ⟨𝑢, 𝑣⟩ ∶ 𝐴 × 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 × 𝐵
fst Γ ⊢ fst (𝑡) ∶ 𝐴

Γ ⊢ 𝑡 ∶ 𝐴 × 𝐵
snd Γ ⊢ snd (𝑡) ∶ 𝐵

The typing relation imposes a judgement on whether or not a term is well-typed.

Proposition 2.15 (Exchange). Every permutation of typing contexts is equivalent:

Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ 𝑡 ∶ 𝐶
exchange

Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑡 ∶ 𝐶

Proof. By induction on the derivation of Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ 𝑡 ∶ 𝐶.
var case By assumption, we have that 𝑡∶𝐶 = 𝑥∶𝐴, or 𝑡∶𝐶 = 𝑦∶𝐵, or some other element of the list
Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3; in any case, Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑡 ∶ 𝐶 is immediately
derivable as an instance of var. ◁

const case By assumption, we have that 𝑡∶𝐶 is a constant, and so Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴]+ Γ3 ⊢ 𝑡 ∶ 𝐶
is immediately derivable as an instance of const. ◁

app case By assumption, we have that Γ1+[𝑥∶𝐴]+Γ2+[𝑦∶𝐵]+Γ3 ⊢ 𝑢 ∶ 𝐴 → 𝐶 and Γ1+[𝑥∶𝐴]+Γ2+
[𝑦∶𝐵] + Γ3 ⊢ 𝑣 ∶ 𝐴 such that Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ 𝑢𝑣 = 𝑡 ∶ 𝐶. The inductive hypothesis
states that Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑢 ∶ 𝐴 → 𝐶 and Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑣 ∶ 𝐴,
from which we can apply app to derive Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑢𝑣 = 𝑡 ∶ 𝐶. ◁

fst, snd case By assumption, we have that Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ 𝑢 ∶ 𝐶 × 𝐵 such that
Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ fst (𝑢) = 𝑡 ∶ 𝐶. The inductive hypothesis states that Γ1 + [𝑦∶𝐵] +
Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑢 ∶ 𝐶 × 𝐵, from which we can apply fst to derive Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢
fst (𝑣) = 𝑡 ∶ 𝐶. The case for snd is similar. ◁

�

Proposition 2.16 (Weakening). Enlarging a typing context does not invalidate its typing judgements:

Γ ⊢ 𝑡 ∶ 𝐴weaken 𝑥 does not occur in ΓΓ + [𝑥∶𝐵] ⊢ 𝑡 ∶ 𝐴

Proof. By induction over the derivation of Γ ⊢ 𝑡 ∶ 𝐴. Almost identical to proof of Proposition 2.15.
�

Proposition 2.17 (Substitution). Any free variable can be swapped with a term of equal type while
maintaining typing judgement:
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Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑣 ∶ 𝐵 Γ + Γ ′ ⊢ 𝑢 ∶ 𝐴
subst Γ + Γ ′ ⊢ 𝑣[𝑢/𝑥] ∶ 𝐵

Proof. By induction on the derivation of Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑣 ∶ 𝐵.
var case By assumption, we have that 𝑣∶𝐵 = 𝑥∶𝐴, or 𝑣∶𝐵 is some element of the list Γ + Γ ′; in the

first case, we have 𝐵 = 𝐴 and 𝑣[𝑢/𝑥] = 𝑥[𝑢/𝑥] = 𝑢 and so Γ + Γ ′ ⊢ 𝑣[𝑢/𝑥] ∶ 𝐴. Otherwise, 𝑣 ≠ 𝑥 is
some variable (as 𝑥may only occur once in the list Γ + [𝑥∶𝐴] + Γ ′), so Γ + Γ ′ ⊢ 𝑣 ∶ 𝐵 as a result of
applying var, and the substitution [𝑢/𝑥] has no effect, hence Γ + Γ ′ ⊢ 𝑣 = 𝑣[𝑢/𝑥] ∶ 𝐵. ◁

const case By assumption, we have that 𝑣∶𝐵 is a constant, and so the substitution [𝑢/𝑣] has no effect,
allowing us to immediately derive Γ + Γ ′ ⊢ 𝑣 = 𝑣[𝑢/𝑥] ∶ 𝐵 as an instance of const. ◁

app case By assumption, we have that Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑝 ∶ 𝐶 → 𝐵 and Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑞 ∶ 𝐶 such
that Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑝𝑞 = 𝑣 ∶ 𝐵. By the inductive hypothesis, we derive Γ + Γ ′ ⊢ 𝑝[𝑢/𝑥] ∶ 𝐶 → 𝐵
and Γ+Γ ′ ⊢ 𝑞[𝑢/𝑥] ∶ 𝐶, from which we can derive Γ+Γ ′ ⊢ 𝑝[𝑢/𝑥]𝑞[𝑢/𝑥] = (𝑝𝑞)[𝑢/𝑥] = 𝑣[𝑢/𝑥] ∶ 𝐵
as an instance of app. ◁

fst, snd case By assumption, we have that Γ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑡 ∶ 𝐵 × 𝐶 such that Γ + [𝑥∶𝐴] + Γ ′ ⊢
fst (𝑡) = 𝑣 ∶ 𝐵. The inductive hypothesis states that Γ + Γ ′ ⊢ 𝑡[𝑢/𝑥] ∶ 𝐵 × 𝐶, from which we can
apply fst to derive Γ + Γ ′ ⊢ fst 􏿴𝑡[𝑢/𝑥]􏿷 = fst (𝑡) [𝑢/𝑥] = 𝑣[𝑢/𝑥] ∶ 𝐵. The case for snd is similar. ◁

�

Theorem 2.18 (Type uniqueness). If Γ is a typing context, and 𝑡 is a term such that Γ ⊢ 𝑡 ∶ 𝐴 and
Γ ⊢ 𝑡 ∶ 𝐵, then 𝐴 = 𝐵.

Proof. By induction on the derivation of Γ ⊢ 𝑡 ∶ 𝐴. Almost identical to proof of Proposition 2.15.
�

Therefore, under a typing context, if a term has a type, the type is unique, and we call such a term
typable. However, consider the two distinct typing judgement derivations for Γ + [𝑥∶𝐴] + [𝑦∶𝐵] ⊢ 𝑡 ∶ 𝐶
supposing we already have a fixed derivation for Γ ⊢ 𝑡 ∶ 𝐶:

…
Γ ⊢ 𝑡 ∶ 𝐶weaken Γ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐶

weaken Γ + [𝑥∶𝐴] + [𝑦∶𝐵] ⊢ 𝑡 ∶ 𝐶

…
Γ ⊢ 𝑡 ∶ 𝐶weaken Γ + [𝑦∶𝐵] ⊢ 𝑡 ∶ 𝐶

weaken Γ + [𝑦∶𝐵] + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐶
exchange

Γ + [𝑥∶𝐴] + [𝑦∶𝐵] ⊢ 𝑡 ∶ 𝐶
In general, the typing judgement derivation for a term is not unique! But this is not problematic as we

could recover uniqueness by being extremely fastidious about syntactic identifications. The technique
of de Bruijn indices (Bruijn 1972) allows us to represent the syntax of the 𝜆-calculus in such a way
that terms are invariant under 𝛼-equivalence, so two terms are considered 𝛼-equivalent if and only if
they are syntactically equal — essentially, variables bound in a context are replaced with indices fully
determined by the structure of the term; then, we only accept typing contexts with subjects which are
numerically ordered.

Ben-Yelles (1979) showed thatwith reasonable constraints on the typing context, we have the following
result:

Lemma 2.19 (Deduction uniqueness for 𝛽-normal terms). If 𝑡 is a term in 𝛽-normal form, with
a deduction8 Δ of Γ ⊢ 𝑡 ∶ 𝐴, then

(i) every type in Δ has an occurrence in 𝐴 or in a type in Γ,
(ii) Δ is unique.

8A deduction is a restricted form of derivation, as a mathematical object — see Hindley (1997 p. 16).
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Proof. See Hindley (1997 Chapter 2B). �

This can be extended to the syntax we employ, for some ‘reasonable constraints’ (e.g. insisting on
binary products only, and asserting that ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ≠ ⟨𝑥, ⟨𝑦, 𝑧⟩⟩); however, these concerns are entirely
bureaucratic and we shall not consider them.

These type-forming rules define how to assign simple-types to terms, and we will concentrate only
terms which have a simple-type (i.e. they are typable). This 𝜆-calculus is more restricted, but has some
properties which make it nicer to work with, which we discuss next.

2.3 Properties of 𝜆-calculi
In this section, we briefly outline some key properties of 𝜆-calculi.

Definition 2.20 (Consistency). A 𝜆-calculus is consistent if there exist distinct terms which are not
equated.

It seems like a very basic requirement that any 𝜆-calculus we consider is consistent, else such a theory
cannot distinguish between any of its terms. The introduction of too many equalities between terms in
the theory can cause it to collapse into inconsistency.

Definition 2.21 (Church-Rosser). Take↭ to be the symmetric reflexive transitive closure of a reduc-
tion relation→. A 𝜆-calculus has the Church-Rosser property if, for terms 𝑥 and 𝑦 such that 𝑥 ↭ 𝑦,
there exists some term 𝑧 such that 𝑥 { 𝑧 and 𝑦 { 𝑧.

Definition 2.22 (Confluence). Term reduction in a 𝜆-calculus is confluent if, given a term 𝑡 such that
𝑡 { 𝑢 and 𝑡 { 𝑣, there exists a term 𝑤 such that 𝑢 { 𝑤 and 𝑣 { 𝑤:

𝑡

𝑢 𝑣

𝑤

{ {

{ {

This is the diamond property, and it states that different reduction orders will not yield contravening
terms. Confluence is equivalent to the Church-Rosser property (O’donnell 1977 Chapter 4), and the two
terms are used interchangeably in the literature. For a comprehensive text on term rewriting, consult
Baader & Nipkow (1998).

Theorem 2.23. 𝛽𝜂-reduction in 𝜆�× is confluent.

Proof. See Barendregt (1984 p. 67).
�

Confluence allows us to prove the following desirable property about terms.

Corollary 2.24. All normal forms of terms in 𝜆�× are unique.

Proof. Suppose that 𝑢 and 𝑣 are normal forms of 𝑡, i.e. 𝑡 { 𝑢 and 𝑡 { 𝑣. Then by confluence, there
is some 𝑤 such that 𝑢 { 𝑤 and 𝑣 { 𝑤. But 𝑢 and 𝑣 are normal, so can only reduce to themselves,
hence 𝑢 = 𝑤 = 𝑣.

�

The consistency of 𝜆�× immediately follows.

Theorem 2.25 (Weak normalisation). There exists a reduction strategy for the normalisation of
terms in 𝜆�× which terminates.
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Proof. See Girard et al. (1989 pp. 24–25).
�

This result allows us to computationally discern term equality.

Corollary 2.26 (Decidability of term equivalence). The equivalence of two terms 𝑢 and 𝑣 in
𝜆�× is decidable.

Proof. As 𝜆�× is weakly normalising, we have a terminating strategy to normalise both 𝑢 and 𝑣.
𝑢 = 𝑣 if and only if they have the same normal form.

�

However, for the simply-typed 𝜆-calculus an even stronger result holds.

Theorem 2.27 (Strong normalisation). Every reduction strategy for the normalisation of terms in
𝜆�× terminates.

Proof. See Girard et al. (1989 Chapter 6).
�

These results show that a normal form is computable for any typable term, which underlies the notion
that typable terms are ‘well-behaved’, and that such a normal form is necessarily unique; furthermore,
every reduction brings us closer to a normal form, and there is no way to reduce infinitely.

2.4 𝜆�×-theories

Now we have established the basic machinery of 𝜆-calculus, we can discuss a 𝜆�×-theory (in the sense
of a collection of terms closed under 𝛽𝜂-equality). This is the precise mathematical object to which a
categorical semantics can be attributed.

Definition 2.28 (𝜆�×-axiom). A 𝜆�×-axiom is an equation-in-context of the form

𝜎 ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴,

which is an identification between Γ ⊢ 𝑢 ∶ 𝐴 and Γ ⊢ 𝑣 ∶ 𝐴 internalised in the theory.

Definition 2.29 (𝜆�×-theory). A 𝜆�×-theory, T, is a signature 𝜎 accompanied by a collection of
axioms A

T ≔ (𝜎,A).

The theorems of T are the equations-in-context derivable from A under signature 𝜎. This notion of
derivability is defined precisely as

A ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴axiom
T ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴

𝜎 ▷ Γ ⊢ 𝑡 ∶ 𝐴refl
T ▷ Γ ⊢ 𝑡 = 𝑡 ∶ 𝐴

T ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴sym
T ▷ Γ ⊢ 𝑣 = 𝑢 ∶ 𝐴

T ▷ Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴 T ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴trans
T ▷ Γ ⊢ 𝑡 = 𝑣 ∶ 𝐴
𝜎 ▷ Γ ⊢ 𝑡 ∶ unitunit

T ▷ Γ ⊢ 𝑡 = ⟨⟩ ∶ unit
𝜎 ▷ Γ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵 𝜎 ▷ Γ ⊢ 𝑣 ∶ 𝐴𝛽

T ▷ Γ ⊢ (𝜆𝑥∶𝐴.𝑢)𝑣 = 𝑢[𝑣/𝑥] ∶ 𝐵
𝜎 ▷ Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵𝜂 𝑥 ∉ fv (𝑡)

T ▷ Γ ⊢ (𝜆𝑥∶𝐴.𝑡𝑥) = 𝑡 ∶ 𝐴 → 𝐵

T ▷ Γ + [𝑥∶𝐴] ⊢ 𝑢 = 𝑣 ∶ 𝐵
abs

T ▷ Γ ⊢ 𝜆𝑥∶𝐴.𝑢 = 𝜆𝑥∶𝐴.𝑣 ∶ 𝐴 → 𝐵
T ▷ Γ ⊢ 𝑠 = 𝑡 ∶ 𝐴 → 𝐵 T ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴app

T ▷ Γ ⊢ 𝑠𝑢 = 𝑡𝑣 ∶ 𝐵
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𝜎 ▷ Γ ⊢ 𝑡 ∶ 𝐴 × 𝐵pair
T ▷ Γ ⊢ ⟨fst (𝑡) , snd (𝑡)⟩ = 𝑡 ∶ 𝐴 × 𝐵

𝜎 ▷ Γ ⊢ 𝑢 ∶ 𝐴 𝜎 ▷ Γ ⊢ 𝑣 ∶ 𝐵
fst

T ▷ Γ ⊢ fst (⟨𝑢, 𝑣⟩) = 𝑢 ∶ 𝐴
𝜎 ▷ Γ ⊢ 𝑢 ∶ 𝐴 𝜎 ▷ Γ ⊢ 𝑣 ∶ 𝐵

snd
T ▷ Γ ⊢ snd (⟨𝑢, 𝑣⟩) = 𝑣 ∶ 𝐵

These rules ensure that the identification Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴 is closed under 𝑢 =𝛽𝜂 𝑣.
We now have a few results reflecting the results of Section 2.2 for 𝜆�×-theorems.

Proposition 2.30 (Exchange for derivations). An identification made in T under a context will
hold under any permutation of that context:

Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ 𝑢 = 𝑣 ∶ 𝐶
exchange

Γ1 + [𝑦∶𝐵] + Γ2 + [𝑥∶𝐴] + Γ3 ⊢ 𝑢 = 𝑣 ∶ 𝐶

Proof. Trivial induction over the derivation of Γ1 + [𝑥∶𝐴] + Γ2 + [𝑦∶𝐵] + Γ3 ⊢ 𝑢 = 𝑣 ∶ 𝐶 using
Proposition 2.15.

�

In the categorical semantics, this makes sense as typing contexts are modelled by finite products; two
products with exactly the same data are canonically isomorphic irrespective of their ordering, and so
are notionally ‘the same’.

Proposition 2.31 (Weakening for derivations). An identification made in T will continue to
hold in a larger context:

Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴weaken 𝑥 does not occur in ΓΓ + [𝑥∶𝐵] ⊢ 𝑢 = 𝑣 ∶ 𝐴

Proof. Trivial induction over the derivation of Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴 using Proposition 2.16.
�

Categorically, one can view the model of the consequent as the projection of the the larger typing
context to the smaller one composed with the model of the antecedent.

Similarly to before, we have a substitution theorem, slightly stronger than Proposition 2.17.

Proposition 2.32 (Substitution for derivations). Equality under T is invariant under substitut-
ing a free variable for equal terms judged under the remaining context:

T ▷ Γ + [𝑥∶𝐴] ⊢ 𝑠 = 𝑡 ∶ 𝐵 T ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴
subst

T ▷ Γ ⊢ 𝑠[𝑢/𝑥] = 𝑡[𝑣/𝑥] ∶ 𝐵

Proof. By assumption, we have 𝜎 ▷ Γ + [𝑥∶𝐴] ⊢ 𝑠 ∶ 𝐵 and 𝜎 ▷ Γ ⊢ 𝑢 ∶ 𝐴, so by 𝛽 we derive
T ▷ Γ ⊢ (𝜆𝑥∶𝐴.𝑠)𝑢 = 𝑠[𝑢/𝑥] ∶ 𝐵, and similarly derive T ▷ Γ ⊢ (𝜆𝑥∶𝐴.𝑡)𝑣 = 𝑡[𝑣/𝑥] ∶ 𝐵.

Now,

assumption
T ▷ Γ + [𝑥∶𝐴] ⊢ 𝑠 = 𝑡 ∶ 𝐵

abs
T ▷ Γ ⊢ 𝜆𝑥∶𝐴.𝑠 = 𝜆𝑥∶𝐴.𝑡 ∶ 𝐴 → 𝐵

assumption
T ▷ Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴app

T ▷ Γ ⊢ (𝜆𝑥∶𝐴.𝑠)𝑢 = (𝜆𝑥∶𝐴.𝑡)𝑣 ∶ 𝐵

The proof can be completed by application of equational reasoning rules.
�

We end this section with some basic but important examples adapted from Awodey & Bauer (2017
pp. 79–82) which exemplify the expressivity of 𝜆�×-theories.
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Example 2.33 (Theory of monoids). The theory of monoids is a 𝜆�×-theory, with signature

TV = {𝑋} , 𝑒∶𝑋, ⋅∶𝑋 × 𝑋 → 𝑋,

and axioms (writing 𝑥 ⋅ 𝑦 for ⋅(⟨𝑥, 𝑦⟩))

[𝑥∶𝑋, 𝑦∶𝑋, 𝑧∶𝑋] ⊢ (𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧) ∶ 𝑋,
[𝑥∶𝑋] ⊢ 𝑒 ⋅ 𝑥 = 𝑥 ∶ 𝑋,
[𝑥∶𝑋] ⊢ 𝑥 ⋅ 𝑒 = 𝑥 ∶ 𝑋.

These axioms give us precisely the properties of a monoid: associativity of the monoid operation ⋅ and a
distinguished identity 𝑒∶𝑋.

It is clear how to extend this to the theory of groups, rings, or other algebraic structures — in fact,
any algebraic theory determines a 𝜆�×-theory.

Example 2.34 (Theory of extensional reflexive type). The unityped theory of extensional reflexive type
is a 𝜆�×-theory with signature

TV = {𝑇} , 𝐫∶𝑇 → (𝑇 → 𝑇), 𝐬∶(𝑇 → 𝑇) → 𝑇,

and axioms

[𝑓∶𝑇 → 𝑇] ⊢ 𝐫(𝐬(𝑓)) = 𝑓 ∶ 𝑇 → 𝑇,
[𝑥∶𝑇] ⊢ 𝐬(𝐫(𝑥)) = 𝑥 ∶ 𝑇.

These equations give an isomorphism between types

𝑇 ≅ 𝑇 → 𝑇,

so this theory is really the theory of the unityped 𝜆-calculus, and by syntactic translation represents the
untyped 𝜆-calculus: we translate an untyped term 𝑡 into a unityped one 𝑡∗ inductively as follows

𝑥∗ = 𝑥, for 𝑥 ∈ V

(𝑢𝑣)∗ = (𝐫(𝑢∗))𝑣∗,
(𝜆𝑥.𝑢)∗ = 𝐬(𝜆𝑥∶𝑇.𝑢∗).

In order to talk about terms-in-context, we bootstrap a new typing context with every free variable
typed as 𝑇:

[𝑥1∶𝑇, … , 𝑥𝑛∶𝑇] ⊢ 𝑡∗ ∶ 𝑇,

where fv (𝑡) = 􏿺𝑥1, … , 𝑥𝑛􏿽.

Example 2.35 (Theory of PCF). The theory of PCF is a 𝜆�×-theory given by signature

TV = {nat, bool}

with constants and function symbols

0∶nat, succ∶nat→ nat, cond𝐴∶bool→ 𝐴 → 𝐴 → 𝐴,
true∶bool, pred∶nat→ nat, fix𝐴∶(𝐴 → 𝐴) → 𝐴,

false∶bool, iszero∶nat→ bool,
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for each type 𝐴 ∈ ST (TV). The equations are generated from the axioms

⊢ iszero(0) = true ∶ bool,
[𝑛∶nat] ⊢ iszero(succ(𝑛)) = false ∶ bool,
[𝑛∶nat] ⊢ pred(0) = 0 ∶ nat,
[𝑛∶nat] ⊢ succ(pred(succ(𝑛))) = succ(𝑛) = pred(succ(succ(𝑛))) ∶ nat,

[𝑡∶𝐴, 𝑓∶𝐴] ⊢ cond𝐴(true)(𝑡)(𝑓) = 𝑡 ∶ 𝐴,
[𝑡∶𝐴, 𝑓∶𝐴] ⊢ cond𝐴(false)(𝑡)(𝑓) = 𝑓 ∶ 𝐴,
[𝑓∶𝐴 → 𝐴] ⊢ fix𝐴(𝑓) = 𝑓(fix𝐴(𝑓)) ∶ 𝐴.

fix𝐴 is a fixed point combinator for the type 𝐴, and while we could do away with the other constants
and function symbols by means of encoding (e.g. Church’s), this really needs to be provided in the
meta-theory.

In the theory of PCF, we can write our program from Listing 1 as

BIN = nat→ nat→ nat, UN = nat→ nat,
𝐹 = (BIN→ BIN) → BIN, 𝐺 = (UN→ UN) → UN,

add = fix𝐹(𝜆𝑓∶BIN .𝜆𝑥∶nat.𝜆𝑦∶nat.condnat((iszero(𝑦)))(𝑥)(𝑓(succ(𝑥))(pred(𝑦)))),
mult = fix𝐹(𝜆𝑓∶BIN .𝜆𝑥∶nat.𝜆𝑦∶nat.condnat((iszero(𝑦)))(𝑦)(add(𝑓𝑥(pred(𝑦)))𝑥)),

factorial = fix𝐺(𝜆𝑓∶UN .𝜆𝑛∶nat.condnat((iszero(𝑛)))(𝑠𝑢𝑐𝑐(0))(mult𝑛(𝑓(pred(𝑛))))).

In fact, we have a very strong result for PCF9:

Theorem 2.36. The computable functions are precisely the PCF-definable functions.

Proof. See Plotkin (1977 p. 251). �

We have not been terribly formal about computability theory, but it is clear that PCF would suffice
to provide a basis for functional languages without losing any of the computational power of the
untyped 𝜆-calculus: by Church-Turing thesis, we can write any algorithm in PCF. For a reference on
computability, consult Sipser (2012). Henceforth, we will focus on 𝜆�×-theories as our object of study.

9This kind of result is colloquially known as Turing completeness.
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3 CATEGORICAL SEMANTICS

We seek to model our 𝜆�×-theory categorically, by giving it a foundation in category theory. We will
follow the approach of Crole (1993 Chapter 4); for details of the derivation of such semantics, see Crole
(1993 pp. 163–168). Basic category theory, such as the definition of a category, functors, products,
exponentials (see Appendix A), natural transformations, and adjunctions will be assumed; the standard
reference text is Mac Lane (1998), but Awodey (2010) and Leinster (2016) are more suitable for those
with a computer science background. Pierce (1991) provides an elementary introduction, and a short
(albeit slightly outdated) survey of category theory applied to computer science, and Milewski (2017)
provides an informal exposition suited to programmers who are non-mathematicians.

Definition 3.1 (Model of 𝜆�× in a Cartesian closed category). Given a 𝜆�×-signature 𝜎, we define a
model𝕄 in a Cartesian closed category 𝒞 to be a structure generated by the following data: objects

• for every ground type 𝐺 ∈ TV of 𝜎, an associated object J𝐺K;
and morphisms
• for every constant 𝑐∶𝐴, an associated morphism J𝑐K ∶ 1 → J𝐴K;
• for every 𝑛-ary function symbol, where 𝑛 > 0, 𝑓∶𝐴1 × ⋯ × 𝐴𝑛 → 𝐵, an associated morphismq

𝑓
y
∶ J𝐴1K ×⋯ × J𝐴𝑛K → J𝐵K;

such that
• the unit type unit is associated to the terminal object 1;
• for every other simple type 𝐴 ∈ ST (TV), association is given inductively by

J𝐴 → 𝐵K ≔ J𝐴K ⇒ J𝐵K, (CatSem-→)
J𝐴 × 𝐵K ≔ J𝐴K × J𝐵K. (CatSem-×)

Furthermore, typing contexts are also modelled by objects10:

JΓK =

⎧⎪⎪⎨
⎪⎪⎩
1, if Γ = [],
J𝐴1K ×⋯ × J𝐴𝑛K, if Γ = [𝑥1∶𝐴1, … , 𝑥𝑛∶𝐴𝑛].

(CatSem-Γ)

Finally, the typed terms of 𝜎 are modelled as follows

var 𝑥∶𝐴 is the 𝑖th element of
Γ + [𝑥∶𝐴] + Γ ′JΓ + [𝑥∶𝐴] + Γ ′ ⊢ 𝑥 ∶ 𝐴K ≔ 𝜋𝑖 ∶ JΓK × J𝐴K × JΓ ′K → J𝐴K

unit
JΓ ⊢ ⟨⟩ ∶ unitK ≔!∶ JΓK → 1

const 𝑐 is a constant of type 𝐴
JΓ ⊢ 𝑐 ∶ 𝐴K ≔ JΓK

!
−→ 1

J𝑐K
−−−→ J𝐴K

JΓ ⊢ 𝑡1 ∶ 𝐴1K = J𝑡1K ∶ JΓK → J𝐴1K … JΓ ⊢ 𝑡𝑛 ∶ 𝐴𝑛K = J𝑡𝑛K ∶ JΓK → J𝐴𝑛Kfunc
𝑓 is an 𝑛-ary function

symbol of type
𝐴1 ×⋯ × 𝐴𝑛 → 𝐵q

Γ ⊢ 𝑓(𝑡1, … , 𝑡𝑛) ∶ 𝐵
y
≔ JΓK

⟨
q
𝑡1

y
,…,

q
𝑡𝑛

y
⟩

−−−−−−−−−−−−→ J𝐴1K ×⋯ × J𝐴𝑛K
q
𝑓
y

−−−−→ J𝐵K

JΓ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐵K = 𝑠 ∶ JΓK × J𝐴K → J𝐵K
abs JΓ ⊢ (𝜆𝑥∶𝐴.𝑡) ∶ 𝐴 → 𝐵K ≔ curry (𝑠) ∶ JΓK → J𝐴K ⇒ J𝐵K

JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K = J𝑢K ∶ JΓK → J𝐴K ⇒ J𝐵K JΓ ⊢ 𝑣 ∶ 𝐴K = J𝑣K ∶ JΓK → J𝐴Kapp
JΓ ⊢ 𝑢𝑣 ∶ 𝐵K ≔ JΓK

⟨J𝑢K,J𝑣K⟩
−−−−−−−−→ J𝐴K ⇒ J𝐵K × J𝐴K

evJ𝐴K,J𝐵K
−−−−−−−−→ J𝐵K

JΓ ⊢ 𝑢 ∶ 𝐴K = J𝑢K ∶ JΓK → J𝐴K JΓ ⊢ 𝑣 ∶ 𝐵K = J𝑣K ∶ JΓK → J𝐵K
pair

JΓ ⊢ ⟨𝑢, 𝑣⟩ ∶ 𝐴 × 𝐵K ≔ ⟨J𝑢K, J𝑣K⟩ ∶ JΓK → J𝐴K × J𝐵K
10Categorical products conventionally associate to the left, so we write 𝑋 × 𝑌 × 𝑍 to mean (𝑋 × 𝑌) × 𝑍.
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JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K = J𝑡K ∶ JΓK → J𝐴K × J𝐵K
fst

JΓ ⊢ fst (𝑡) ∶ 𝐴K ≔ JΓK
J𝑡K
−−−→ J𝐴K × J𝐵K

𝜋1−−→ J𝐴K

JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K = J𝑡K ∶ JΓK → J𝐴K × J𝐵K
snd

JΓ ⊢ snd (𝑡) ∶ 𝐴K ≔ JΓK
J𝑡K
−−−→ J𝐴K × J𝐵K

𝜋2−−→ J𝐵K

𝕄 satisfies an equation-in-context Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴 if morphisms JΓ ⊢ 𝑢 ∶ 𝐴K and JΓ ⊢ 𝑣∶ 𝐴K are
equal in 𝒞, and furthermore𝕄models T = (𝜎,A) if it satisfies all equations-in-context generated by T.
As a result of the Soundness Theorem (to be shown), this coincides exactly with𝕄 satisfying A.

Lemma 3.2 (Semantics of simultaneous substitution). Given a model𝕄 in a Cartesian closed
category 𝒞, such that Γ ⊢ 𝑡 ∶ 𝐵, where Γ = [𝑥1∶𝐴1, … , 𝑥𝑛∶𝐴𝑛] is modelled by

JΓK = J𝐴1K ×⋯ × J𝐴𝑛K,

and there is Γ ′ ⊢ 𝑢𝑖 ∶ 𝐴𝑖 for 𝑖 ∈ {1, … , 𝑛}, there exists a morphism
r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z
such that the

following diagram commutes:

JΓ ′K JΓK

J𝐵K

⟨
q
Γ′⊢𝑢1 ∶ 𝐴1

y
,…,

q
Γ′⊢𝑢𝑛∶𝐴𝑛

y
⟩

r
Γ′⊢𝑡􏿮𝑢⃗/𝑥⃗􏿱∶𝐵

z JΓ⊢𝑡∶𝐵K

Proof. By induction on the derivation of Γ ⊢ 𝑡 ∶ 𝐵, writing 𝛾 for ⟨JΓ ′ ⊢ 𝑢𝑖 ∶ 𝐴1K, … , JΓ ′ ⊢ 𝑢𝑖 ∶ 𝐴1K⟩.
var case If 𝑡 = 𝑥𝑖 for some 𝑖 ∈ {1, … , 𝑛} is a variable, then

r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
JΓ ′ ⊢ 𝑢𝑖 ∶ 𝐴𝑖K

= { universal property of product }
𝜋𝑖 ∘ 𝛾

= { var }
JΓ ⊢ 𝑥𝑖 ∶ 𝐴𝑖K ∘ 𝛾.

◁
unit case If 𝑡 is ⟨⟩, then

r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
JΓ ′ ⊢ ⟨⟩ ∶ unitK

= { unit }
!JΓ′K

= { universal property of terminal object }
!JΓK ∘ 𝛾

= { unit }
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JΓ ⊢ ⟨⟩ ∶ unitK ∘ 𝛾.

◁
const case If 𝑡 is a constant, then

r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
JΓ ′ ⊢ 𝑡 ∶ 𝐵K

= { const }
J𝑡K∘!JΓ′K

= { universal property of terminal object }
J𝑡K∘!JΓK ∘ 𝛾

= { const }
JΓ ⊢ 𝑡 ∶ 𝐵K ∘ 𝛾.

◁
func case If 𝑡 is an application of a 𝑛-ary function symbol 𝑠 to 𝑣𝑖 for 𝑖 ∈ {1, … , 𝑛}, 𝑠(𝑣1, … , 𝑣𝑛), such

that there exist JΓ ⊢ 𝑣𝑖 ∶ 𝐶𝑖K ∶ JΓK → J𝐶𝑖K, and J𝑠K ∶ J𝐶1K ×⋯ × J𝐶𝑛K → J𝐵K, then
r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
r
Γ ′ ⊢ 𝑠(𝑣1 􏿮𝑢⃗/𝑥⃗􏿱 , … , 𝑣𝑛 􏿮𝑢⃗/𝑥⃗􏿱) ∶ 𝐵

z

= { func }

J𝑠K ∘ ⟨
r
Γ ′ ⊢ 𝑣1 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶1

z
, … ,

r
Γ ′ ⊢ 𝑣𝑛 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶𝑛

z
⟩

where
r
Γ ′ ⊢ 𝑣𝑖 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶𝑖

z
∶ JΓ ′K → J𝐶𝑖K

= { inductive hypothesis:
r
Γ ′ ⊢ 𝑣𝑖 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶𝑖

z
= JΓ ⊢ 𝑣𝑖 ∶ 𝐶𝑖K ∘ 𝛾 }

J𝑠K ∘ ⟨JΓ ⊢ 𝑣1 ∶ 𝐶1K ∘ 𝛾, … , JΓ ⊢ 𝑣𝑛 ∶ 𝐶𝑛K ∘ 𝛾⟩
= { composition distributes over product }

J𝑠K ∘ ⟨JΓ ⊢ 𝑣1 ∶ 𝐶1K, … , JΓ ⊢ 𝑣𝑛 ∶ 𝐶𝑛K⟩ ∘ 𝛾
= { func }

JΓ ⊢ 𝑠(𝑣1, … , 𝑣𝑛) ∶ 𝐵K ∘ 𝛾.

◁
abs case Firstly, consider the following lemma about currying.

Lemma 3.3. In any Cartesian closed category, with morphisms 𝑓∶ 𝑋 × 𝑌 → 𝑍 and 𝑔 ∶ 𝑊 → 𝑋,

curry 􏿴𝑓 ∘ 𝑔 × id𝑌􏿷 = curry 􏿴𝑓􏿷 ∘ 𝑔.

See proof of Theorem A.4 for a proof.
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If 𝑡 is an abstraction𝜆𝑦∶𝐶.𝑠, such that𝐵 = 𝐶 → 𝐷 and there exist JΓ + [𝑥∶𝐶] ⊢ 𝑠 ∶ 𝐵K ∶ JΓK×J𝐶K →
J𝐷K, then

r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
r
Γ ′ ⊢ 𝜆𝑦∶𝐶.𝑠 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶 → 𝐷

z

= { abs }

curry 􏿵
r
Γ ′ + [𝑦∶𝐶] ⊢ 𝑠 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐷

z
􏿸

= { inductive hypothesis }

curry 􏿴
q
Γ + [𝑦∶𝐶] ⊢ 𝑠 ∶ 𝐷

y
∘ 𝛾 × idJ𝐶K􏿷

= { Lemma 3.3 }

curry 􏿴
q
Γ + [𝑦∶𝐶] ⊢ 𝑠 ∶ 𝐷

y
􏿷 ∘ 𝛾

= { abs }
q
Γ ⊢ 𝜆𝑦∶𝐶.𝑠 ∶ 𝐶 → 𝐷

y
∘ 𝛾.

◁
app case If 𝑡 is an application 𝑠𝑣, such that there exist JΓ ⊢ 𝑠 ∶ 𝐶 → 𝐵K ∶ JΓK → J𝐶K ⇒ J𝐵K and

JΓ ⊢ 𝑣 ∶ 𝐶K ∶ JΓK → J𝐶K, then
r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
r
Γ ′ ⊢ 𝑠 􏿮𝑢⃗/𝑥⃗􏿱 𝑣 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { app }

evJ𝐶K,J𝐵K ∘ ⟨
r
Γ ′ ⊢ 𝑠 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶 → 𝐵

z
,
r
Γ ′ ⊢ 𝑣 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐶

z
⟩

= { inductive hypothesis }
evJ𝐶K,J𝐵K ∘ ⟨JΓ ⊢ 𝑠 ∶ 𝐶 → 𝐵K ∘ 𝛾, JΓ ⊢ 𝑣 ∶ 𝐶K ∘ 𝛾⟩

= { composition distributes over product }
evJ𝐶K,J𝐵K ∘ ⟨JΓ ⊢ 𝑠 ∶ 𝐶 → 𝐵K, JΓ ⊢ 𝑣 ∶ 𝐶K⟩ ∘ 𝛾

= { app }
JΓ ⊢ 𝑠𝑣 ∶ 𝐵K ∘ 𝛾.

◁
pair case If 𝑡 is a pair ⟨𝑝, 𝑞⟩, such that 𝐵 = 𝑃 × 𝑄 and there exist

q
Γ ⊢ 𝑝 ∶ 𝑃

y
∶ JΓK → J𝑃K andq

Γ ⊢ 𝑞 ∶ 𝑄
y
∶ JΓK → J𝑄K, then

r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
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r
Γ ′ ⊢ ⟨𝑝 􏿮𝑢⃗/𝑥⃗􏿱 , 𝑞 􏿮𝑢⃗/𝑥⃗􏿱⟩ ∶ 𝑃 × 𝑄

z

= { pair }

⟨
r
Γ ′ ⊢ 𝑝 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝑃

z
,
r
Γ ′ ⊢ 𝑞 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝑄

z
⟩

= { inductive hypothesis }

⟨
q
Γ ⊢ 𝑝 ∶ 𝑃

y
∘ 𝛾,

q
Γ ⊢ 𝑞 ∶ 𝑄

y
∘ 𝛾⟩

= { composition distributes over product }

⟨
q
Γ ⊢ 𝑝 ∶ 𝑃

y
,
q
Γ ⊢ 𝑞 ∶ 𝑄

y
⟩ ∘ 𝛾

= { pair }
q
Γ ⊢ ⟨𝑝, 𝑞⟩ ∶ 𝑃 × 𝑄

y
∘ 𝛾.

◁
fst, snd case If 𝑡 is the first element of a pair 𝑣, such that there exists JΓ ⊢ 𝑣 ∶ 𝐵 × 𝐶K ∶ JΓK →

J𝐵K × J𝐶K, then
r
Γ ′ ⊢ 𝑡 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵

z

= { substitution }
s
Γ ′ ⊢ fst 􏿵𝑣 􏿮𝑢⃗/𝑥⃗􏿱􏿸 ∶ 𝐵

{

= { fst }

𝜋1 ∘
r
Γ ′ ⊢ 𝑣 􏿮𝑢⃗/𝑥⃗􏿱 ∶ 𝐵 × 𝐶

z

= { inductive hypothesis }
𝜋1 ∘ JΓ ⊢ 𝑣 ∶ 𝐵 × 𝐶K ∘ 𝛾

= { fst }
JΓ ⊢ fst (𝑣) ∶ 𝐵K ∘ 𝛾.

The case for snd is similar. ◁
�

Corollary 3.4 (Semantics of singular substitution). Given a model𝕄 in a Cartesian closed
category 𝒞, such that Γ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐵 and Γ ⊢ 𝑢 ∶ 𝐴, there exists a morphism JΓ ⊢ 𝑡[𝑢/𝑥] ∶ 𝐵K to make
the following diagram commute:

JΓK JΓK × J𝐴K

J𝐵K

⟨idJΓK,JΓ⊢𝑢∶𝐴K⟩

JΓ⊢𝑡[𝑢/𝑥]∶𝐵K
JΓ+[𝑥∶𝐴]⊢𝑡∶𝐵K

Proof. Follows as a special case of Lemma 3.2.
�

This lemma tells us that substitution (which is how 𝛽-reduction is defined) is interpreted by a
composite of two morphisms in𝕄, and is fundamental to the 𝛽 case when we come to prove soundness.
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4 CATEGORICAL TYPE THEORY CORRESPONDENCE

The Curry-Howard-Lambek correspondence postulates a three-way isomorphism between type theory,
proof theory, and category theory, which is informally referred to as computational trinitarianism
(Harper 2011):

Type Theory Proof Theory

Category Theory

∼

∼ ∼

Fig. 2. The ’Holy Trinity’

The categorical type theory correspondence is the notion that category theory and type theory are
intrinsically related; the bottom left edge, and the specific relationship explored by this thesis is the one
between Cartesian closed categories and 𝜆�×-theories, in the sense that both are morally ‘the same’. In
the sequel, we explore more precisely what this means.

4.1 Soundness

The construction described in Definition 3.1 does form a category, although we would like to know
that it faithfully reflects equations generated by a 𝜆�×-theory T — a soundness theorem expressing that
the categorical interpretation of T suffices as a valid semantics for T. For instance, given an equation-
in-context Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴, we would like their interpretations JΓ ⊢ 𝑢 ∶ 𝐴K and JΓ ⊢ 𝑣 ∶ 𝐴K to be ‘the
same’. As the interpretations are morphisms, the appropriate notion of ‘sameness’ is an identification of
morphism equality in the category.

Theorem 4.1 (Soundness of categorical semantics). Given a Cartesian closed category 𝒞 and
𝜆�×-theory T = (𝜎,A), any structure of 𝜆�×-signature 𝜎,𝕄, in 𝒞models T. That is to say,𝕄 satisfies
all equations-in-context ofA.

Equivalently, for terms-in-context Γ ⊢ 𝑢 ∶ 𝐴 and Γ ⊢ 𝑣 ∶ 𝐴,

Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴 ⟹ JΓ ⊢ 𝑢 ∶ 𝐴K = JΓ ⊢ 𝑣 ∶ 𝐴K.

Proof. We proceed by induction on the theorems derivable in T (see Definition 2.29).
axiom case Trivial. ◁
refl, sym, trans cases Follows from = being an equivalence relation on morphisms of 𝒞. ◁
unit case By the inductive hypothesis,𝕄 satisfies Γ ⊢ 𝑡 ∶ unit, which is modelled by

JΓ ⊢ 𝑡 ∶ unitK =!JΓK,

and so𝕄 satisfies Γ ⊢ 𝑡 = ⟨⟩ ∶ unit due to the universal property of terminal object. ◁
𝛽 case By the inductive hypothesis,𝕄 satisfies Γ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵 and Γ ⊢ 𝑣 ∶ 𝐴, modelled by

JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K ∶ JΓK × J𝐴K → J𝐵K,
and

JΓ ⊢ 𝑣 ∶ 𝐴K ∶ JΓK → J𝐴K,

so we have

JΓ ⊢ (𝜆𝑥∶𝐴.𝑢)𝑣 ∶ 𝐵K
= { app, JΓ ⊢ 𝑣 ∶ 𝐴K exists by inductive hypothesis }
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evJ𝐴K,J𝐵K ∘ ⟨JΓ ⊢ (𝜆𝑥∶𝐴.𝑢) ∶ 𝐴 → 𝐵K, JΓ ⊢ 𝑣 ∶ 𝐴K⟩

= { abs, JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K exists by inductive hypothesis }

evJ𝐴K,J𝐵K ∘ ⟨curry 􏿴JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K􏿷 , JΓ ⊢ 𝑣 ∶ 𝐴K⟩

= { composition distributes over product }

evJ𝐴K,J𝐵K ∘ curry 􏿴JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K􏿷 × idJ𝐴K ∘ ⟨idJΓK, JΓ ⊢ 𝑣 ∶ 𝐴K⟩

= { uncurry }

uncurry 􏿵curry 􏿴JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K􏿷􏿸 ∘ ⟨idJΓK, JΓ ⊢ 𝑣 ∶ 𝐴K⟩

= { universal property of exponential }
JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K ∘ ⟨idJΓK, JΓ ⊢ 𝑣 ∶ 𝐴K⟩

= { Corollary 3.4 }
JΓ ⊢ 𝑢[𝑣/𝑥] ∶ 𝐵K.

◁
𝜂 case By the inductive hypothesis,𝕄 satisfies Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵, modelled by

JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K ∶ JΓK → J𝐴K ⇒ J𝐵K,

so we have

JΓ ⊢ (𝜆𝑥∶𝐴.𝑡𝑥) ∶ 𝐴 → 𝐵K
= { abs }

curry 􏿴JΓ + [𝑥∶𝐴] ⊢ 𝑡𝑥 ∶ 𝐵K􏿷

= { app }

curry 􏿴evJ𝐴K,J𝐵K ∘ ⟨JΓ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐴 → 𝐵K, JΓ + [𝑥∶𝐴] ⊢ 𝑥 ∶ 𝐴K⟩􏿷

= { var, JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K exists by inductive hypothesis }

curry 􏿴evJ𝐴K,J𝐵K ∘ ⟨JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K ∘ 𝜋1, 𝜋2⟩􏿷

= { − × − for morphisms }

curry 􏿴evJ𝐴K,J𝐵K ∘ JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K × idJ𝐴K􏿷

= { uncurry }

curry 􏿵uncurry 􏿴JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K􏿷􏿸

= { universal property of exponential }
JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K.

◁
abs case By the inductive hypothesis,𝕄 satisfies Γ + [𝑥∶𝐴] ⊢ 𝑢 = 𝑣 ∶ 𝐵, so we have

JΓ ⊢ 𝜆𝑥∶𝐴.𝑢 ∶ 𝐴 → 𝐵K
= { abs }

curry 􏿴JΓ + [𝑥∶𝐴] ⊢ 𝑢 ∶ 𝐵K􏿷

= { inductive hypothesis }
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curry 􏿴JΓ + [𝑥∶𝐴] ⊢ 𝑣 ∶ 𝐵K􏿷

= { abs }
JΓ ⊢ 𝜆𝑥∶𝐴.𝑣 ∶ 𝐴 → 𝐵K.

◁
app case By the inductive hypothesis,𝕄 satisfies Γ ⊢ 𝑠 = 𝑡 ∶ 𝐴 → 𝐵 and Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴, so we have

JΓ ⊢ 𝑠𝑢 ∶ 𝐵K
= { app }

evJ𝐴K,J𝐵K ∘ ⟨JΓ ⊢ 𝑠 ∶ 𝐴 → 𝐵K, JΓ ⊢ 𝑢 ∶ 𝐴K⟩

= { inductive hypothesis }
evJ𝐴K,J𝐵K ∘ ⟨JΓ ⊢ 𝑡 ∶ 𝐴 → 𝐵K, JΓ ⊢ 𝑣 ∶ 𝐴K⟩

= { app }
JΓ ⊢ 𝑡𝑣 ∶ 𝐵K.

◁
pair case By the inductive hypothesis,𝕄 satisfies Γ ⊢ 𝑡 ∶ 𝐴 × 𝐵, so we have

JΓ ⊢ ⟨fst (𝑡) , snd (𝑡)⟩ ∶ 𝐴 × 𝐵K
= { pair }
⟨JΓ ⊢ fst (𝑡) ∶ 𝐴K, JΓ ⊢ snd (𝑡) ∶ 𝐵K⟩

= { fst and snd }
⟨𝜋1 ∘ JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K, 𝜋2 ∘ JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K⟩

= { universal property of product }
JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K.

◁
fst, snd case By the inductive hypothesis,𝕄 satisfies Γ ⊢ 𝑢 ∶ 𝐴 and Γ ⊢ 𝑣 ∶ 𝐵, so we have

JΓ ⊢ fst (⟨𝑢, 𝑣⟩) ∶ 𝐴K
= { fst }
𝜋1 ∘ JΓ ⊢ ⟨𝑢, 𝑣⟩ ∶ 𝐴 × 𝐵K

= { pair }
𝜋1 ∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐴K, JΓ ⊢ 𝑣 ∶ 𝐵K⟩

= { universal property of product }
JΓ ⊢ 𝑢 ∶ 𝐴K.

The case for snd is similar. ◁
This covers all the cases for derivable theorems in T, and so𝕄 satisfies all equations generated by T.

�
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Corollary 4.2. Every Cartesian closed category 𝒞 gives rise to a 𝜆�×-theory Lan (𝒞). Such a theory
is called the internal language of 𝒞.

Proof. We will define Lan (𝒞) = (𝜎(𝒞 ),A(𝒞 )) by its signature and then its axioms. Its signature
has ground types the objects of 𝒞, and function symbols for the morphisms of 𝒞 (where constants
correspond to global elements of 𝒞). Furthermore, for each object 𝑋 of 𝒞, we define two function
symbols

model𝑋 ∶ 𝑋 → J𝑋K,
unmodel𝑋 ∶ J𝑋K → 𝑋,

where J𝑋K is the interpretation of 𝑋 in a structure of 𝜎(𝒞 ) in 𝒞. A canonical choice for such a structure
assigns

• J𝐺K = 𝐺 for all ground types 𝐺 of 𝜎(𝒞 ), ensuring that by definition of categorical semantics that
J𝑋K = 𝑋 for all types generated by the signature;

•
q
𝑓
y
= 𝑓 for all function symbols and constants;

•
q
model𝑋

y
=

q
unmodel𝑋

y
= id𝑋.

Now let A(𝒞 ) be the set of equations-in-context satisfied by 𝜎(𝒞 ), thus such a structure is a model
of Lan (𝒞).

�

The internal language of a category can be used to reason about it; indeed, a big part of the categorical
type theory correspondence is that any derivable theorem from the perspective of 𝜆�×-theory has a
meaningful interpretation in a Cartesian closed category, and vice versa.

4.2 Completeness

As all Cartesian closed categories model any given 𝜆�×-theory T, a natural follow up to the Soundness
Theorem is to consider how all models of T in a specific Cartesian closed category relate. The answer is
that they form a category of models, with model homomorphisms as morphisms, which we explore in
due course.

Furthermore, given a 𝜆�×-theory T, we would like to construct a Cartesian closed category which
contains amodel of it—better still, the ‘smallest’ such category, in the sense of a Cartesian closed category
freely generated from T, formalising the notion of ‘no unnecessary information’. Such a category is called
the classifying category of T, denoted Syn (T), and accompanying this construction is a completeness
theorem ensuring the adequacy of Syn (T) in modelling T.

Firstly, we develop the notion of a Cartesian closed functor.

Definition 4.3 (Product-preserving functor). A functor 𝐹∶ 𝒞 → 𝒟 preserves finite products if and only
if for each finite product∏𝑛

𝑖 𝑋𝑖 in 𝒞 with projection maps 𝜋𝑖 ∶ ∏
𝑛
𝑖 𝑋𝑖 → 𝑋𝑖, there is an isomorphism

in𝒟

Φ∏𝑛
𝑖 𝑋𝑖

≔ ⟨𝐹(𝜋1), … , 𝐹(𝜋𝑛)⟩ ∶ 𝐹

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑛

􏾠
𝑖

𝑋𝑖

⎞
⎟⎟⎟⎟⎟⎟⎠

∼
−→

𝑛

􏾠
𝑖

𝐹(𝑋𝑖). (PP-Functor)

In the case where 𝑛 = 0, we say that 𝐹 preserves the terminal object, with Φ∶ 𝐹(1𝒞)
∼
−→ 1𝒟. 𝐹 is strict if

each isomorphism is an identity.

Lemma 4.4. Given morphisms 𝑓∶ 𝑊 → 𝑋, 𝑔 ∶ 𝑌 → 𝑍, and a product-preserving functor 𝐹∶ 𝒞 → 𝒟,
the following diagram commutes:
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𝐹(𝑊 × 𝑌) 𝐹(𝑊) × 𝐹(𝑌)

𝐹(𝑋 × 𝑍) 𝐹(𝑋) × 𝐹(𝑍)

∼
Φ𝑊×𝑌

𝐹(𝑓×𝑔) 𝐹(𝑓)×𝐹(𝑔)

∼
Φ𝑋×𝑍

Proof. Consider the universal property of product in𝒟:

𝐹(𝑊) × 𝐹(𝑌)

𝐹(𝑋) 𝐹(𝑋) × 𝐹(𝑍) 𝐹(𝑍)

𝐹(𝑓)∘𝜋1 𝐹(𝑔)∘𝜋2⟨𝐹(𝑓)∘𝜋1,𝐹(𝑔)∘𝜋2⟩

𝜋1 𝜋2

So the morphism ⟨𝐹(𝑓) ∘ 𝜋1, 𝐹(𝑔) ∘ 𝜋2⟩ = 𝐹(𝑓) ×𝐹(𝑔) is unique in𝒟, and hence equal toΦ𝑋×𝑍 ∘ 𝐹(𝑓 ×
𝑔) ∘ Φ−1

𝑊×𝑌. Composition with inverses yields 𝐹(𝑓 × 𝑔) = Φ−1
𝑋×𝑍 ∘ 𝐹(𝑓) × 𝐹(𝑔) ∘ Φ𝑊×𝑌.

�

Definition 4.5 (Cartesian closed functor). A functor 𝐹∶ 𝒞 → 𝒟 is Cartesian closed if and only if it
preserves finite products and exponentials; it is a product-preserving functor such that additionally
there is an isomorphism in𝒟

Ψ𝐴⇒𝐵 ≔ curry 􏿴𝐹(ev𝐴,𝐵) ∘ Φ−1
𝐴⇒𝐵×𝐴􏿷 ∶ 𝐹(𝐴 ⇒ 𝐵)

∼
−→ 𝐹(𝐴) ⇒ 𝐹(𝐵). (CC-Functor)

𝐹 is strict if each isomorphism is an identity.

Lemma 4.6. Given morphisms 𝑓∶ 𝑊 → 𝑋, 𝑔 ∶ 𝑌 → 𝑍, and a Cartesian closed functor 𝐹∶ 𝒞 → 𝒟, the
following diagram commutes:

𝐹(𝑊 ⇒ 𝑌) 𝐹(𝑊) ⇒ 𝐹(𝑌)

𝐹(𝑋 ⇒ 𝑍) 𝐹(𝑋) ⇒ 𝐹(𝑍)

∼
Ψ𝑊⇒𝑌

𝐹(𝑓⇒𝑔) 𝐹(𝑓)⇒𝐹(𝑔)

∼
Ψ𝑋⇒𝑍

Proof. Consider the universal property of exponential in𝒟:

𝐹(𝑊) ⇒ 𝐹(𝑌) 𝐹(𝑊) ⇒ 𝐹(𝑌) × 𝐹(𝑋)

𝐹(𝑋) ⇒ 𝐹(𝑍) 𝐹(𝑋) ⇒ 𝐹(𝑍) × 𝐹(𝑋) 𝐹(𝑍)

curry(①)
①≔𝐹(𝑔)∘ev𝐹(𝑊),𝐹(𝑌)∘id𝐹(𝑊)⇒𝐹(𝑌)×𝐹(𝑓)①×id𝐹(𝑋)

ev𝐹(𝑋),𝐹(𝑍)

So the morphism curry 􏿴𝐹(𝑔) ∘ ev𝐹(𝑊),𝐹(𝑌) ∘ id𝐹(𝑊)⇒𝐹(𝑌) × 𝐹(𝑓)􏿷 = 𝐹(𝑓) ⇒ 𝐹(𝑔) is unique in𝒟, and
hence equal toΨ𝑋⇒𝑍 ∘𝐹(𝑓 ⇒ 𝑔)∘Ψ−1

𝑊⇒𝑌. Composition with inverses yields 𝐹(𝑓 ⇒ 𝑔) = Ψ−1
𝑋⇒𝑍 ∘𝐹(𝑓) ⇒

𝐹(𝑔) ∘ Ψ𝑊⇒𝑌.
�



26 Nick Hu

Definition 4.7 (Naturally isomorphic Cartesian closed functor category). The category of naturally
isomorphic Cartesian closed functors between two Cartesian closed categories 𝒞 and𝒟 is the category
with Cartesian closed functors as its objects and natural isomorphisms as its morphisms, written

CCCat≃ (𝒞 ,𝒟) .

This is a subcategory of the functor category [𝒞 ,𝒟 ], obtained by removing natural transformations
which are not isomorphisms.

More machinery is required to develop the completeness theorem.

4.2.1 Syntactic category. Secondly, we describe the construction of a ‘minimal’ category from a
𝜆�×-theory.

Definition 4.8 (Syntactic category). Let T be a 𝜆�×-theory, and introduce

⌜𝑡⌝𝐴 ≔⊢ 𝑡 ∶ 𝐴

as notation for the closed term of 𝑡 of type 𝐴. Then, we construct a syntactic category Syn (T) from only
the syntax of T as follows:

• objects are given by the simple types of T;
• morphisms are given by equivalence classes (under T11) of closed terms of T: [⌜𝑡⌝𝐴]

T
;

– necessarily, for each constant 𝑐∶𝐴 and 𝑛-ary function symbol 𝑓∶𝐴1 ×⋯ × 𝐴𝑛 → 𝐵,

[⌜𝑐⌝𝐴]
T

and [⌜𝑓⌝𝐴1×⋯×𝐴𝑛→𝐵]
T

exist;
• identity morphisms given by id𝐴 ≔ [⌜𝜆𝑥∶𝐴.𝑥⌝𝐴→𝐴]

T
;

• composition between 𝑓 = [⌜𝑢⌝𝐴→𝐵]
T

and 𝑔 = [⌜𝑣⌝𝐵→𝐶]
T

given by

𝑔 ∘ 𝑓 ≔ [⌜𝜆𝑥∶𝐴.𝑔(𝑓𝑥)⌝𝐴→𝐶]
T
; (Syn-∘)

• a terminal object 1 ≔ unit;
• products given by 𝐴 × 𝐵 ≔ 𝐴 × 𝐵12 with projections 𝜋1 ≔ [⌜fst⌝𝐴×𝐵→𝐴]

T
and

𝜋2 ≔ [⌜snd⌝𝐴×𝐵→𝐵]
T
;

• exponentials given by 𝐴 ⇒ 𝐵 ≔ 𝐴 → 𝐵 with ev𝐴,𝐵 ≔ [⌜𝜆𝑥∶(𝐴 → 𝐵) × 𝐴. fst (𝑥) snd (𝑥)⌝𝐵]
T
.

Proposition 4.9. Syn (T) forms a Cartesian closed category.

Proof. First, we must show that it forms a category: composition is associative, and that identities
are indeed identities.

Take 𝑓 = [⌜𝑡⌝𝐴→𝐵]
T
, 𝑔 = [⌜𝑢⌝𝐵→𝐶]

T
, and ℎ = [⌜𝑣⌝𝐶→𝐷]

T
; then

ℎ ∘ (𝑔 ∘ 𝑓)
= { (Syn-∘) }

ℎ ∘ [⌜𝜆𝑥∶𝐴.𝑢(𝑡𝑥)⌝𝐴→𝐶]
T

= { (Syn-∘) }

[⌜𝜆𝑦∶𝐴.𝑣(𝜆𝑥∶𝐴.𝑢(𝑡𝑥)𝑦)⌝𝐴→𝐷]
T

= { 𝛽-equivalence }

11Such an equivalence is given by 𝛽𝜂-equality plus equalities resulting from A.
12The syntax − × − is overloaded here, meaning categorical product on the left and product type on the right.
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[⌜𝜆𝑦∶𝐴.𝑣(𝑢(𝑡𝑦))⌝𝐴→𝐷]
T

= { 𝛽-equivalence }

[⌜𝜆𝑦∶𝐴.𝜆𝑧∶𝐵.𝑣(𝑢𝑧)(𝑡𝑦)⌝𝐴→𝐷]
T

= { (Syn-∘) }

[⌜𝜆𝑧∶𝐵.𝑣(𝑢𝑧)⌝𝐵→𝐷]
T
∘ 𝑓

= { (Syn-∘) }
(ℎ ∘ 𝑔) ∘ 𝑓.

It is also trivial to see that, for any morphism 𝑓 = [⌜𝑡⌝𝐴→𝐵]
T
,

id𝐵 ∘ 𝑓
= { (Syn-∘) }

[⌜𝜆𝑥∶𝐴.(𝜆𝑦∶𝐵.𝑦)(𝑡𝑥)⌝𝐴→𝐵]
T

= { 𝛽-equivalence }

[⌜𝜆𝑥∶𝐴.𝑡𝑥⌝𝐴→𝐵]
T

= { 𝜂-equivalence }
= 𝑓

= { 𝛽-equivalence }

[⌜𝜆𝑥∶𝐴.𝑡((𝜆𝑧∶𝐴.𝑧)𝑥)⌝𝐴→𝐵]
T

= { (Syn-∘) }
𝑓 ∘ id𝐴.

Now, it remains to be shown that unit is indeed the terminal object, and that there exist unique (up
to unique isomorphism) products and exponentials.

Consider any type𝐴, and construct the term !𝐴 ≔ [⌜𝜆𝑥∶𝐴.⟨⟩⌝𝐴→unit]
T
, which is the constant function

returning ⟨⟩; as we made no assumptions on 𝐴 other than it is a type, such a morphism exists for
all objects in Syn (T). Now, for uniqueness, it suffices to show that for any 𝑓∶ 𝐴 → 𝐵 = [⌜𝑡⌝𝐴→𝐵]

T
,

!𝐵 ∘ 𝑓 =!𝐴:

!𝐵 ∘ 𝑓
= { (Syn-∘) }

[⌜𝜆𝑦∶𝐴.(𝑥∶𝐵.⟨⟩)(𝑡𝑦)⌝𝐴→unit]
T

= { 𝛽-equivalence }

[⌜𝜆𝑦∶𝐴.⟨⟩⌝𝐴→unit]
T

= { definition of !𝐴 }
!𝐴.

For products, we need to show that for any two morphisms 𝑓∶ 𝐴 → 𝐵 = [⌜𝑢⌝𝐴→𝐵]
T

and 𝑔 ∶ 𝐴 →
𝐶 = [⌜𝑣⌝𝐴→𝐵]

T
, there is a unique morphism ⟨𝑓, 𝑔⟩ ∶ 𝐴 → 𝐵 × 𝐶 through which 𝑓 and 𝑔 factor; i.e.

𝑓 = 𝜋1 ∘ ⟨𝑓, 𝑔⟩ and 𝑔 = 𝜋2 ∘ ⟨𝑓, 𝑔⟩. Construct

⟨𝑓, 𝑔⟩ ≔ [⌜𝜆𝑥∶𝐴.⟨𝑢𝑥, 𝑣𝑥⟩⌝𝐴→𝐵×𝐶]
T
, (Syn-⟨−, −⟩)



28 Nick Hu

and then

𝜋1 ∘ ⟨𝑓, 𝑔⟩
= { (Syn-⟨−, −⟩) and (Syn-∘) }

[⌜𝜆𝑦∶𝐴. fst 􏿴((𝜆𝑥∶𝐴.⟨𝑢𝑥, 𝑣𝑥⟩)𝑦)􏿷⌝
𝐴→𝐵

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑦∶𝐴. fst 􏿴⟨𝑢𝑦, 𝑣𝑦⟩􏿷⌝
𝐴→𝐵

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑦∶𝐴.𝑢𝑦⌝𝐴→𝐵]
T

= { 𝜂-equivalence }
𝑓,

and similarly for 𝑔. For the uniqueness, it is sufficient to show that, given 𝑓∶ 𝐴 → 𝐵×𝐶 = [⌜𝑡⌝𝐴→𝐵×𝐶]
T
,

𝑓 = ⟨𝜋1 ∘ 𝑓, 𝜋2 ∘ 𝑓⟩:

⟨𝜋1 ∘ 𝑓, 𝜋2 ∘ 𝑓⟩
= { (Syn-∘) }

⟨[⌜𝜆𝑥∶𝐴. fst (𝑡𝑥)⌝𝐴→𝐵]
T
, [⌜𝜆𝑥∶𝐴. snd (𝑡𝑥)⌝𝐴→𝐶]

T
⟩

= { (Syn-⟨−, −⟩) }

[⌜𝜆𝑦∶𝐴.⟨(𝜆𝑥∶𝐴. fst (𝑡𝑥))𝑦, (𝜆𝑥∶𝐴. snd (𝑡𝑥))𝑦⟩⌝𝐴→𝐵×𝐶]
T

= { 𝛽-equivalence }

[⌜𝜆𝑦∶𝐴.⟨fst 􏿴𝑡𝑦􏿷 , snd 􏿴𝑡𝑦􏿷⟩⌝
𝐴→𝐵×𝐶

]
T

= { 𝜂-equivalence }

[⌜𝜆𝑦∶𝐴.𝑡𝑦⌝𝐴→𝐵×𝐶]
T

= { 𝜂-equivalence }
𝑓.

Finally, for the exponential, we must demonstrate, for every 𝑓∶ 𝐴 × 𝐵 → 𝐶 = [⌜𝑡⌝𝐴×𝐵→𝐶]
T
, the

existence of a morphism curry 􏿴𝑓􏿷 ∶ 𝐴 → 𝐵 ⇒ 𝐶 such that 𝑓 = ev𝐵,𝐶 ∘ curry 􏿴𝑓􏿷 × id𝐵. Construct

curry 􏿴𝑓􏿷 ≔ [⌜𝜆𝑥∶𝐴.𝜆𝑦∶𝐵.𝑡⟨𝑥, 𝑦⟩⌝𝐴→(𝐵→𝐶)]
T
, (Syn-curry)

and observe that

ev𝐵,𝐶 ∘ curry 􏿴𝑓􏿷 × id𝐵
= { (Syn-curry) }

ev𝐵,𝐶 ∘ [⌜𝜆𝑥∶𝐴.𝜆𝑦∶𝐵.𝑡⟨𝑥, 𝑦⟩⌝
𝐴→(𝐵→𝐶)]

T
× id𝐵

= { × }

ev𝐵,𝐶 ∘ ⟨[⌜𝜆𝑥∶𝐴.𝜆𝑦∶𝐵.𝑡⟨𝑥, 𝑦⟩⌝
𝐴→(𝐵→𝐶)]

T
∘ 𝜋1, id𝐵 ∘ 𝜋2⟩

= { (Syn-∘) }
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ev𝐵,𝐶 ∘ ⟨[⌜𝜆𝑧∶𝐴 × 𝐵.(𝜆𝑥∶𝐴.𝜆𝑦∶𝐵.𝑡⟨𝑥, 𝑦⟩)(fst (𝑧))⌝
𝐴×𝐵→(𝐵→𝐶)]

T
, [⌜𝜆𝑥∶𝐴 × 𝐵. snd (𝑥)⌝𝐴×𝐵→𝐵]

T
⟩

= { 𝛽-equivalence }

ev𝐵,𝐶 ∘ ⟨[⌜𝜆𝑧∶𝐴 × 𝐵.𝜆𝑦∶𝐵.𝑡⟨fst (𝑧) , 𝑦⟩⌝
𝐴×𝐵→(𝐵→𝐶)]

T
, [⌜𝜆𝑥∶𝐴 × 𝐵. snd (𝑥)⌝𝐴×𝐵→𝐵]

T
⟩

= { (Syn-⟨−, −⟩) }

ev𝐵,𝐶 ∘ [⌜𝜆𝑤∶𝐴 × 𝐵.⟨(𝜆𝑧∶𝐴 × 𝐵.𝜆𝑦∶𝐵.𝑡⟨fst (𝑧) , 𝑦⟩)𝑤, (𝜆𝑥∶𝐴 × 𝐵. snd (𝑥))𝑤⟩⌝
𝐴×𝐵→(𝐵→𝐶)×𝐵]

T

= { 𝛽-equivalence }

ev𝐵,𝐶 ∘ [⌜𝜆𝑤∶𝐴 × 𝐵.⟨𝜆𝑦∶𝐵.𝑡⟨fst (𝑤) , 𝑦⟩, snd (𝑤)⟩⌝
𝐴×𝐵→(𝐵→𝐶)×𝐵]

T

= { (Syn-∘) }

[⌜𝜆𝑝∶𝐴 × 𝐵.(𝜆𝑞∶(𝐵 → 𝐶) × 𝐵. fst 􏿴𝑞􏿷 snd 􏿴𝑞􏿷)(𝜆𝑤∶𝐴 × 𝐵.⟨𝜆𝑦∶𝐵.𝑡⟨fst (𝑤) , 𝑦⟩, (snd (𝑤)⟩)𝑝)⌝
𝐴×𝐵→𝐶

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑝∶𝐴 × 𝐵.(𝜆𝑞∶(𝐵 → 𝐶) × 𝐵. fst 􏿴𝑞􏿷 snd 􏿴𝑞􏿷)⟨𝜆𝑦∶𝐵.𝑡⟨fst 􏿴𝑝􏿷 , 𝑦⟩, snd 􏿴𝑝􏿷⟩⌝
𝐴×𝐵→𝐶

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑝∶𝐴 × 𝐵.fst 􏿵⟨𝜆𝑦∶𝐵.𝑡⟨fst 􏿴𝑝􏿷 , 𝑦⟩, snd 􏿴𝑝􏿷⟩􏿸 snd 􏿵⟨𝜆𝑦∶𝐵.𝑡⟨fst 􏿴𝑝􏿷 , 𝑦⟩, snd 􏿴𝑝􏿷⟩􏿸⌝
𝐴×𝐵→𝐶

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑝∶𝐴 × 𝐵.(𝜆𝑦∶𝐵.𝑡⟨fst 􏿴𝑝􏿷 , 𝑦⟩)snd 􏿴𝑝􏿷⌝
𝐴×𝐵→𝐶

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑝∶𝐴 × 𝐵.𝑡⟨fst 􏿴𝑝􏿷 , snd 􏿴𝑝􏿷⟩⌝
𝐴×𝐵→𝐶

]
T

= { 𝜂-equivalence }

[⌜𝜆𝑝∶𝐴 × 𝐵.𝑡𝑝⌝𝐴×𝐵→𝐶]
T

= { 𝜂-equivalence }
𝑓.

For uniqueness, we must show that given an 𝑓∶ 𝐴 → 𝐵 ⇒ 𝐶 = [⌜𝑡⌝𝐴→(𝐵→𝐶)]
T
, 𝑓 =

curry 􏿴ev𝐴,𝐵 ∘ 𝑓 × id𝐵􏿷:

curry 􏿴ev𝐴,𝐵 ∘ 𝑓 × id𝐵􏿷

= { × }

curry 􏿴ev𝐴,𝐵 ∘ ⟨𝑓 ∘ 𝜋1, id𝐵 ∘ 𝜋2⟩􏿷

= { (Syn-∘) }

curry 􏿵ev𝐴,𝐵 ∘ ⟨[⌜𝜆𝑥∶𝐴 × 𝐵.𝑡 fst (𝑥)⌝
𝐴×𝐵→(𝐵→𝐶)]

T
, [⌜𝜆𝑥∶𝐴 × 𝐵. snd (𝑥)⌝𝐴×𝐵→𝐵]

T
⟩􏿸

= { (Syn-⟨−, −⟩) }

curry 􏿵ev𝐴,𝐵 ∘ [⌜𝜆𝑦∶𝐴 × 𝐵.⟨(𝜆𝑥∶𝐴 × 𝐵.𝑡 fst (𝑥))𝑦, (𝜆𝑥∶𝐴 × 𝐵. snd (𝑥))𝑦⟩⌝
𝐴×𝐵→(𝐵→𝐶)×𝐵]

T
􏿸

= { 𝛽-equivalence }
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curry 􏿵ev𝐴,𝐵 ∘ [⌜𝜆𝑦∶𝐴 × 𝐵.⟨𝑡 fst 􏿴𝑦􏿷 , snd 􏿴𝑦􏿷⟩⌝
𝐴×𝐵→(𝐵→𝐶)×𝐵

]
T
􏿸

= { (Syn-∘) }

curry 􏿵[⌜𝜆𝑤∶𝐴 × 𝐵.(𝜆𝑧∶𝐴 → 𝐵 × 𝐴. fst (𝑧) snd (𝑧))((𝜆𝑦∶𝐴 × 𝐵.⟨𝑡 fst 􏿴𝑦􏿷 , snd 􏿴𝑦􏿷⟩)𝑤)⌝
𝐴×𝐵→𝐶

]
T
􏿸

= { 𝛽-equivalence }

curry 􏿵[⌜𝜆𝑤∶𝐴 × 𝐵.(𝜆𝑧∶𝐴 → 𝐵 × 𝐴. fst (𝑧) snd (𝑧))⟨𝑡 fst (𝑤) , snd (𝑤)⟩⌝𝐴×𝐵→𝐶]
T
􏿸

= { 𝛽-equivalence }

curry 􏿵[⌜𝜆𝑤∶𝐴 × 𝐵. fst 􏿴⟨𝑡 fst (𝑤) , snd (𝑤)⟩􏿷 snd 􏿴⟨𝑡 fst (𝑤) , snd (𝑤)⟩􏿷⌝
𝐴×𝐵→𝐶

]
T
􏿸

= { 𝛽-equivalence }

curry 􏿵[⌜𝜆𝑤∶𝐴 × 𝐵.(𝑡 fst (𝑤)) snd (𝑤)⌝𝐴×𝐵→𝐶]
T
􏿸

= { (Syn-curry) }

[⌜𝜆𝑝∶𝐴.𝜆𝑞∶𝐵.(𝜆𝑤∶𝐴 × 𝐵.(𝑡 fst (𝑤)) snd (𝑤))⟨𝑝, 𝑞⟩⌝𝐴→(𝐵→𝐶)]
T

= { 𝛽-equivalence }

[⌜𝜆𝑝∶𝐴.𝜆𝑞∶𝐵.(𝑡 fst 􏿴⟨𝑝, 𝑞⟩􏿷) snd 􏿴⟨𝑝, 𝑞⟩􏿷⌝
𝐴→(𝐵→𝐶)

]
T

= { 𝛽-equivalence }

[⌜𝜆𝑝∶𝐴.𝜆𝑞∶𝐵.(𝑡𝑝)𝑞⌝𝐴→(𝐵→𝐶)]
T

= { 𝜂-equivalence }

[⌜𝜆𝑝∶𝐴.𝑡𝑝⌝𝐴→(𝐵→𝐶)]
T

= { 𝜂-equivalence }
𝑓.

Therefore, Syn (T) is a Cartesian closed category.
�

Syn (T) is the free category generated by the syntax of T quotiented by T-equivalence (which is the
closure of T under 𝛽𝜂-equivalence).

4.2.2 Category of models. Thirdly, we examine the structure between different models of any given
𝜆�×-theory confined to a specific Cartesian closed category.

Definition 4.10 (Model homomorphism). A model homomorphism is a structure-preserving map
between models of a 𝜆�×-theory in a category. If 𝕄 models T in 𝒞, then we define a model homo-
morphism

ℎ ∶ 𝕄 → ℕ
by a collection of morphisms which map interpretations of a type of T in𝕄 (objects) to interpretations
of that type inℕ, which commute with the interpretations of function symbols, product types, and
function types.

Each map is called a component of ℎ, and ℎ is specified component-wise by

ℎ𝐴 ∶ J𝐴K
𝕄 → J𝐴K

ℕ

for each type 𝐴 ∈ ST (TV) of T.
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The commutativity conditions are expressed as follows: for each constant symbol 𝑐∶𝐴, the following
diagram commutes

JunitK𝕄 = JunitKℕ J𝐴K
𝕄

J𝐴K
ℕ

J𝑐K𝕄

J𝑐Kℕ
ℎ𝐴 (MHom-Const)

For an 𝑛-ary function symbol 𝑓∶𝐴1 ×⋯ × 𝐴𝑛 → 𝐵, the following diagram commutes

J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄 J𝐵K𝕄

J𝐴1Kℕ ×⋯ × J𝐴𝑛Kℕ J𝐵Kℕ

ℎ𝐴1×⋯×ℎ𝐴𝑛

q
𝑓
y
𝕄

ℎ𝐵

q
𝑓
y
ℕ

(MHom-Func)

For finite products, given morphisms

J𝐵K𝕄 J𝐴1K𝕄 ×⋯ × J𝐴1K𝕄 J𝐶K
𝕄

J𝐵Kℕ J𝐴1Kℕ ×⋯ × J𝐴1Kℕ J𝐶K
ℕ

𝑢 𝑣

𝑠 𝑡

the following diagrams commute

J𝐴K
𝕄 × J𝐵K𝕄 J𝐴K

ℕ × J𝐵Kℕ

J𝐴K
𝕄

J𝐴K
ℕ

ℎ𝐴×𝐵

𝜋1 𝜋1

ℎ𝐴

J𝐴K
𝕄 × J𝐵K𝕄 J𝐴K

ℕ × J𝐵Kℕ

J𝐵K𝕄 J𝐵Kℕ

ℎ𝐴×𝐵

𝜋2 𝜋2

ℎ𝐵

J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄 J𝐴1Kℕ ×⋯ × J𝐴𝑛Kℕ

J𝐵K𝕄 × J𝐶K
𝕄

J𝐵Kℕ × J𝐶K
ℕ

ℎ𝐴1×⋯×𝐴𝑛

⟨𝑢,𝑣⟩ ⟨𝑠,𝑡⟩

ℎ𝐵×𝐶

(MHom-×)

Finally, for function types, given morphisms

J𝐴1K𝕄 ×⋯ × J𝐴1K𝕄 × J𝐵K𝕄 J𝐶K
𝕄

J𝐴1Kℕ ×⋯ × J𝐴1Kℕ × J𝐵Kℕ J𝐶K
ℕ

𝑓

𝑔
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the following diagrams commute

J𝐴K
𝕄 ⇒ J𝐵K𝕄 × J𝐴K

𝕄
J𝐴K

ℕ ⇒ J𝐵Kℕ × J𝐴K
ℕ

J𝐵K𝕄 J𝐵Kℕ

ℎ𝐴⇒𝐵×𝐴

evJ𝐴K𝕄,J𝐵K𝕄
evJ𝐴Kℕ,J𝐵Kℕ

ℎ𝐵

J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄 J𝐴1Kℕ ×⋯ × J𝐴𝑛Kℕ

J𝐵K𝕄 ⇒ J𝐶K
𝕄

J𝐵Kℕ ⇒ J𝐶K
ℕ

ℎ𝐴1×⋯×𝐴𝑛

curry􏿴𝑓􏿷 curry􏿴𝑔􏿷

ℎ𝐵×𝐶

(MHom-⇒)

Definition 4.11 (Model isomorphism). A model isomorphism ℎ ∶ 𝕄
∼
−→ ℕ is a model homomorphism

where each component ℎ𝐴 is required to be an isomorphism:

ℎ𝐴 ∶ J𝐴K
𝕄

∼
−→ J𝐴K

ℕ.

It is generated by a collection of isomorphisms ℎ𝐺 ∶ J𝐺K
𝕄

∼
−→ J𝐺K

ℕ for each ground type 𝐺 ∈ TV; ℎ is
defined component-wise

ℎ𝑋(𝑋) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ℎ𝐺(J𝐺K
𝕄) if 𝑋 = J𝐺K

𝕄, 𝐺 ∈ TV,
(ℎ𝐴 × ℎ𝐵)(J𝐴K

𝕄 × J𝐵K𝕄) if 𝑋 = J𝐴 × 𝐵K𝕄, 𝐴 × 𝐵 ∈ ST (TV),
(ℎ−1𝐴 ⇒ ℎ𝐵)(J𝐴K

𝕄 ⇒ J𝐵K𝕄) if 𝑋 = J𝐴 → 𝐵K𝕄, 𝐴 → 𝐵 ∈ ST (TV).
(MIso-Components)

Proposition 4.12. The definition of model isomorphism suffices to define an isomorphism between
two models.

Proof. See Appendix B, page 46. �

Definition 4.13 (Category of 𝜆�× models). Given a 𝜆�×-theory T and a Cartesian closed category 𝒞,
define

Mod≃ (T, 𝒞)
to be the category with models of T in 𝒞 as objects, and model isomorphisms as morphisms.

Identities are given by the model isomorphism generated by base components of identity morphisms
of 𝒞:

id𝕄𝐺 ≔ idJ𝐺K𝕄
.

Composition between two model isomorphisms is given by the model isomorphism generated by
the composites of the base components:

(ℎ ∘ 𝑔)
𝐺
≔ ℎ𝐺 ∘ 𝑔𝐺.

𝐵 ⇒ 𝐶 𝐵 ⇒ 𝐶 × 𝐴

𝐴 ⇒ 𝐷 𝐵 ⇒ 𝐶 × 𝐵 𝐶 𝐷

curry􏿴𝑔∘ev𝐵,𝐶∘id𝐵⇒𝐶×𝑓􏿷 id𝐵⇒𝐶×𝑓
𝑔∘ev𝐵,𝐶∘id𝐵⇒𝐶×𝑓

ev𝐵,𝐶 𝑔

Definition 4.14 (Model-translating functor). Given a 𝜆�×-theory T, modelled by 𝕄 in 𝒞, and
Cartesian closed functor 𝐹∶ 𝒞 → 𝒟, we define a functor

𝐹∗ ∶ Mod≃ (T, 𝒞) → Mod≃ (T, 𝒟)
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such that 𝐹∗(𝕄) is a model of T in𝒟.
𝐹∗(𝕄) interprets the ground types 𝐺 ∈ TV by sending the interpretation in𝕄 along 𝐹:

J𝐺K
𝐹∗(𝕄) ≔ 𝐹(J𝐺K

𝕄); (ModTrans-Type-Base)

it also sends the unit type as the terminal object:

JunitK𝐹∗(𝕄) ≔ 1𝒟. (ModTrans-Type-unit)

By mimicking the categorical semantics for product and function types,

J𝐴 → 𝐵K𝐹∗(𝕄) ≔ J𝐴K
𝐹∗(𝕄) ⇒ J𝐴K

𝐹∗(𝕄), (ModTrans-Type-→)

J𝐴 × 𝐵K𝐹∗(𝕄) ≔ J𝐴K
𝐹∗(𝕄) × J𝐴K

𝐹∗(𝕄), (ModTrans-Type-×)

this suffices to give rise to a canonical isomorphism parameterised by a type and a model

𝑃𝐶𝕄 ∶ J𝐶K
𝐹∗(𝕄)

∼
−→ 𝐹(J𝐶K

𝕄), (ModTrans-Type)

where 𝐴, 𝐵, 𝐶 ∈ ST (TV). We omit the model when it is unambiguous from context, writing 𝑃𝐶. At
ground types, the canonical choice for this isomorphism is the identity, due to (ModTrans-Type-Base).

Recall that, given a typing context Γ = [𝑥1∶𝐴1, … , 𝑥𝑛∶𝐴𝑛], a term-in-context Γ ⊢ 𝑥 ∶ 𝐵 is modelled in

𝕄 by a morphism: JΓK𝕄
JΓ⊢𝑥∶𝐵K𝕄−−−−−−−−−→ J𝐵K𝕄; similarly to the case for types, the interpretation of such a

term in 𝐹∗(𝕄) is given by

JΓK𝐹∗(𝕄)
J𝐵K𝐹∗(𝕄)

JΓ ⊢ 𝑥 ∶ 𝐵K𝐹∗(𝕄) 𝐹(J𝐴1K𝕄) × ⋯ × 𝐹(J𝐴𝑛K𝕄)

𝐹(J𝐴1 ×⋯ × 𝐴𝑛K𝕄) 𝐹(J𝐵K𝕄)

∼𝑃𝐴1×⋯×𝑃𝐴𝑛

≔

∼Φ−1q
𝐴1

y
𝕄×⋯×J𝐴𝑛K𝕄

𝐹(JΓ⊢𝑥∶𝐵K𝕄)

∼ 𝑃−1𝐵
(ModTrans-Term)

Functions symbols are interpreted similarly: given 𝑓∶ 𝐴1 × ⋯ × 𝐴𝑛 → 𝐵 interpreted in 𝕄 by

J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄

q
𝑓
y
𝕄−−−−−→ J𝐵K𝕄, we then have

J𝐴1K𝐹∗(𝕄) ×⋯ × J𝐴𝑛K𝐹∗(𝕄)
J𝐵K𝐹∗(𝕄)

q
𝑓
y
𝐹∗(𝕄)

𝐹(J𝐴1K𝕄) × ⋯ × 𝐹(J𝐴𝑛K𝕄)

𝐹(J𝐴1 ×⋯ × 𝐴𝑛K𝕄) 𝐹(J𝐵K𝕄)

∼𝑃𝐴1×⋯×𝑃𝐴𝑛

≔

∼Φ−1q
𝐴1

y
𝕄×⋯×J𝐴𝑛K𝕄

𝐹(
q
𝑓
y
𝕄)

∼ 𝑃−1𝐵
(ModTrans-FSym)

as
J𝐴1K𝐹∗(𝕄) ×⋯ × J𝐴𝑛K𝐹∗(𝕄)

≅ { (ModTrans-Type) }
𝐹(J𝐴1K𝕄) × ⋯ × 𝐹(J𝐴𝑛K𝕄)

≅ { 𝐹 preserves finite products along Φ−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
}
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𝐹(J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄)

= { (CatSem-×) }
𝐹(J𝐴1 ×⋯ × 𝐴𝑛K𝕄)

≅ { (ModTrans-Type) }
J𝐴1 ×⋯ × 𝐴𝑛K𝐹∗(𝕄).

Amodel𝕄 of a 𝜆�×-theory in𝒞 is a collection of objects andmorphisms of𝒞, so the object-mapping
part of the functor does indeed map a collection of objects and morphisms of𝒞 to a collection of objects
and morphisms in𝒟.

To complete the definition of 𝐹∗, we must define its action on morphisms of Mod≃ (T, 𝒞): model iso-
morphisms. The model isomorphism ℎ ∶ 𝕄

∼
−→ ℕ is given by its components which map interpretations

of ground types, so we define 𝐹∗(ℎ) to be the model isomorphism with base components

(𝐹∗(ℎ))𝐺 ≔ 𝐹(ℎ𝐺) ∶ J𝐺K
𝐹∗(𝕄) → J𝐺K

𝐹∗(ℕ) (ModTrans-MIso-Base)

for each ground type 𝐺 ∈ TV.

𝐹∗ can be thought of as a free functor generated by a 𝜆�×-theory model𝕄 and a Cartesian closed
functor 𝐹.

Proposition 4.15. The interpretation of a type in 𝐹∗(𝕄) is isomorphic to the image of its interpretation
in𝕄 in 𝐹 (ModTrans-Type).

Proof. See Appendix B, page 47. �

Proposition 4.16. Given a model𝕄 of T = (𝜎,A) in 𝒞, 𝐹∗(𝕄) is a well-defined model of T in𝒟.

Proof. See Appendix B, page 47. �

Now we prove a few lemmas regarding the interaction between the canonical isomorphism 𝑃 and
product and exponential preservation isomorphisms Φ andΨ.

Lemma 4.17. For all 𝐴𝑖 ∈ ST (TV) such that 𝑖 > 0,
1. 𝑃𝐴1×⋯×𝐴𝑛 = Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 ;

2. 𝑃−1𝐴1×⋯×𝐴𝑛
= 𝑃−1𝐴1

×⋯ × 𝑃−1𝐴𝑛
∘ Φq

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
.

Proof. By induction over 𝑛.
𝑛 = 1 case Trivial (recall that Φ𝑋 = id𝑋 if 𝑋 is not a product). ◁
𝑛 = 𝑘 + 1 case By diagram chase:

J𝐴1 ×⋯ × 𝐴𝑘 × 𝐴𝑛K𝐹∗(𝕄) 𝐹(J𝐴1 ×⋯ × 𝐴𝑘 × 𝐴𝑛K𝕄)

J𝐴1 ×⋯ × 𝐴𝑘K𝐹∗(𝕄) × J𝐴𝑛K𝐹∗(𝕄)

𝐹(J𝐴1 ×⋯ × 𝐴𝑘K𝕄) × 𝐹(J𝐴𝑛K𝕄) 𝐹(J𝐴1 ×⋯ × 𝐴𝑘K𝕄 × J𝐴𝑛K𝕄)

𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4.16

∼
𝑃𝐴1×⋯×𝐴𝑘×𝐴𝑛

𝕄 models T

∼
𝑃𝐴1×⋯×𝐴𝑘×𝑃𝐴𝑛

∼
Φ−1q

𝐴1×⋯×𝐴𝑘
y
𝕄×J𝐴𝑛K𝕄
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2 is proven similarly by inverting all of the morphisms. ◁
�

Lemma 4.18. For all 𝐴, 𝐵 ∈ ST (TV),
1. 𝑃𝐴→𝐵 = Ψ−1

J𝐴K𝕄⇒J𝐵K𝕄
∘ 𝑃−1𝐴 ⇒ 𝑃𝐵;

2. 𝑃−1𝐴→𝐵 = 𝑃𝐴 ⇒ 𝑃−1𝐵 ∘ ΨJ𝐴K𝕄⇒J𝐵K𝕄
.

Proof. By diagram chase:

J𝐴 → 𝐵K𝐹∗(𝕄) 𝐹(J𝐴 → 𝐵K𝕄)

J𝐴K
𝐹∗(𝕄) ⇒ J𝐵K𝐹∗(𝕄)

𝐹(J𝐴K
𝕄) ⇒ 𝐹(J𝐵K𝕄) 𝐹(J𝐴K

𝕄 ⇒ J𝐵K𝕄)

𝑃𝑟𝑜𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 4.16

∼
𝑃𝐴→𝐵

𝕄 models T

∼
𝑃−1𝐴 ⇒𝑃𝐵

∼
Φ−1

J𝐴K𝕄⇒J𝐵K𝕄

Observe that (𝑃−1𝐴 ⇒ 𝑃𝐵)
−1 = 𝑃𝐴 ⇒ 𝑃−1𝐵 ; then 2 can be proven by inverting all of the morphisms.

�

Next, we consider model isomorphisms.

Proposition 4.19. Given a model isomorphism ℎ ∶ 𝕄
∼
−→ ℕ, for all 𝐴 ∈ ST (TV),

𝐹∗(ℎ)𝐴 ∶ J𝐴K
𝐹∗(𝕄)

∼
−→ J𝐴K

𝐹∗(ℕ) = 𝑃
−1
𝐴 ℕ ∘ 𝐹(ℎ𝐴) ∘ 𝑃𝐴𝕄. (ModTrans-MIso)

Proof. See Appendix B, page 52. �

Proposition 4.20. 𝐹∗ is a functor.

Proof. We must show that 𝐹∗ preserves
1. domains and codomains: 𝐹∗(ℎ ∶ 𝕄 → ℕ) = 𝐹∗(ℎ) ∶ 𝐹∗(𝕄) → 𝐹∗(ℕ);
2. identities: 𝐹∗(id𝕄) = id𝐹∗(𝕄);
3. composition: 𝐹∗(𝑔 ∘ ℎ) = 𝐹∗(𝑔) ∘ 𝐹∗(ℎ).
The first property is follows from (ModTrans-MIso-Base); each base component of 𝐹∗(ℎ), 𝐹∗(ℎ)𝐺, is

equal to 𝐹(ℎ𝐺) ∶ J𝐺K
𝐹∗(𝕄) → J𝐺K

𝐹∗(ℕ), so by (MIso-Components) 𝐹∗(ℎ) is generated as some mapping
from model 𝐹∗(𝕄) to 𝐹∗(ℕ). For the second property, observe that 𝐹∗(id𝕄) has base components
𝐹(idJ𝐺K𝕄

) for each ground type 𝐺, which is equal to idJ𝐺K𝐹∗(𝕄)
by functoriality of 𝐹, and so this does

define an identity morphism of 𝐹∗(𝕄). Finally, for the third property, we get that 𝐹∗(𝑔 ∘ ℎ) is a model
isomorphism given by base components 𝐹((𝑔 ∘ ℎ)

𝐺
) = 𝐹(𝑔𝐺 ∘ ℎ𝐺) = 𝐹(𝑔𝐺) ∘ 𝐹(ℎ𝐺) by functoriality, and

so is the composition of model isomorphisms 𝐹∗(𝑔) ∘ 𝐹∗(ℎ) as required.
�

This shows that 𝐹∗ type checks, but it remains to verify that 𝐹∗(ℎ) is a valid model isomorphism.

Proposition 4.21. Given a model isomorphism ℎ ∶ 𝕄 → ℕ, 𝐹∗(ℎ) ∶ 𝐹∗(𝕄) → 𝐹∗(ℕ) is a model
isomorphism.
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Proof. See Appendix B, page 53. �

Definition 4.22 (Model isomorphism freely generated by natural isomorphism). If 𝐹∶ 𝒞 → 𝒟 and
𝐸∶ 𝒞 → 𝒟 are Cartesian closed functors, with a natural isomorphism 𝜙∶ 𝐹

∼
=⇒ 𝐸, then we define the

model isomorphism
𝜙∗𝕄∶ 𝐹∗(𝕄)

∼
−→ 𝐸∗(𝕄)

generated by the collection of isomorphisms

(𝜙∗𝕄)𝐺 ≔ 𝜙J𝐺K𝕄
∶ 𝐹(J𝐺K

𝕄) = J𝐺K
𝐹∗(𝕄)

∼
−→ J𝐺K

𝐸∗(𝕄) = 𝐸(J𝐺K
𝕄)

for each ground type 𝐺 ∈ TV of a 𝜆�×-theory.

Proposition 4.23. 𝜙∗𝕄 is a model isomorphism.

Proof. See Appendix B, page 54. �

Now we combine the machinery together.

4.2.3 Categorical equivalence.

Definition 4.24 (Modelling functor). If 𝒞 and𝒟 are Cartesian closed categories, T is a 𝜆�×-theory,
and𝕄 a model of T in 𝒞, then we define the family of modelling functors

Ap𝕄 ∶ CCCat≃ (𝒞 ,𝒟) → Mod≃ (T, 𝒟)

which maps Cartesian closed functors to models:

𝐹 ↦ 𝐹∗(𝕄),

and natural isomorphisms to model isomorphisms:

𝜙 ↦ 𝜙∗𝕄.

Definition 4.25 (Generic model). A generic model of a 𝜆�×-theory T is a model 𝔾 such that the
modelling functor

Ap𝔾 ∶ CCCat≃ 􏿴Syn (T) ,𝒟􏿷 → Mod≃ (T, 𝒟)
is fully faithful and essentially surjective (i.e. an equivalence).

The canonical choice for𝔾 in Syn (T) is given by associating each ground type 𝐺 ∈ TV to its syntactic
object:

J𝐺K
𝔾 ≔ 𝐺,

and each constant 𝑐∶𝐴 and 𝑛-ary function symbol 𝑓∶𝐴1 ×⋯ × 𝐴𝑛 → 𝐵 to its respective morphism:

J𝑐K𝔾 ≔ [⌜𝑐⌝𝐴]
T
,

q
𝑓
y
𝔾
≔ [⌜𝑓⌝𝐴1×⋯×𝐴𝑛→𝐵]

T
.

The definition of Syn (T) then ensures that J𝐴K
𝔾 = 𝐴 for all 𝐴 ∈ ST (TV), each term-in-context is

associated to it its T-equivalence class, and typing contexts are also modelled in the ordinary way
(CatSem-Γ).

In fulfilling Definition 3.1, we have shown that 𝔾 is a structure of 𝜎, and hence by the Soundness
Theorem it is a model.

Ap𝔾 sends the identity functor idSyn(T) to 𝔾.

Such a model is generic, in the sense that we make no arbitrary choices: merely construct the syntactic
category and assign interpretations to their syntactic duals. Generic models are important because they
capture in the most precise fashion the notion of ‘minimal’ with respect to models.
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Definition 4.26 (Classifying category). Syn (T) is described as classifying if its generic model exists,
along with an equivalence

CCCat≃ 􏿴Syn (T) ,𝒟􏿷 ≃ Mod≃ (T, 𝒟)

for all Cartesian closed categories𝒟.

To demonstrate such an equivalence, we can give witness to functors in either direction such that the
compositions are naturally isomorphic to the relevant identity functor.

Definition 4.27 (Generic modelling functor). The generic modelling functor is the modelling functor
parameterised by the generic model 𝔾,

Ap𝔾 ∶ CCCat≃ 􏿴Syn (T) ,𝒟􏿷 → Mod≃ (T, 𝒟) .

This functor maps each Cartesian closed functor 𝐹∶ Syn (T) → 𝒟 to a generic model 𝐹∗(𝔾).
Now we define its ‘inverse’.

Definition 4.28 (Inverse generic modelling functor). The inverse generic modelling functor is given by

Ap−1𝔾 ∶ Mod≃ (T, 𝒟) → CCCat≃ 􏿴Syn (T) ,𝒟􏿷

which acts on models𝕄 of T in𝒟, yielding a Cartesian closed functor 𝐹∶ Syn (T) → 𝒟, which maps
syntactic objects to the interpretation of their corresponding type in𝕄:

𝐴 ↦ J𝐴K
𝕄,

and T-equivalence classes of terms to their interpretation in𝕄:

[⌜𝑡⌝𝐴]
T
↦ J⊢ 𝑡 ∶ 𝐴K

𝕄.

Well-definedness arises from the Soundness Theorem, and it is clear that this is a (strict) Cartesian
closed functor.

The action of Ap−1𝔾 on a model isomorphism ℎ ∶ 𝕄 → ℕ is a natural isomorphism between functors
Ap−1𝔾 (𝕄) and Ap−1𝔾 (ℕ), with components

􏿵Ap−1𝔾 (ℎ)􏿸𝐴
∶ Ap−1𝔾 (𝕄)(𝐴) = J𝐴K

𝕄
∼
−→ J𝐴K

ℕ = Ap−1𝔾 (ℕ)(𝐴) ≔ ℎ𝐴.

We prove that this really defines a natural isomorphism in the following proposition.

Proposition 4.29. Given a model isomorphism ℎ ∶ 𝕄 → ℕ, Ap−1𝔾 (ℎ) is a natural isomorphism.

Proof. See Appendix B, page 55. �

Theorem 4.30 (Syn (T) is classifying). The syntactic category Syn (T) of a 𝜆�×-theory is classifying.

Proof. Syn (T) contains a generic model 𝔾 of T, and we give witness to the categorical equivalence
equivalence with natural isomorphisms

𝜖 ∶ Ap𝔾 ∘ Ap
−1
𝔾

∼
=⇒ idMod≃(T,𝒟) and 𝜂 ∶ Ap−1𝔾 ∘ Ap𝔾

∼
=⇒ idCCCat≃􏿴Syn(T),𝒟􏿷.

We define 𝜖 component-wise on models𝕄 of T in a Cartesian closed category𝒟:

𝜖𝕄 ∶ Ap𝔾(Ap
−1
𝔾 (𝕄)) → 𝕄
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is required to be a model isomorphism, and observe that Ap−1𝔾 (𝕄) yields a Cartesian closed functor
𝐹∶ Syn (T) → 𝒟 which maps syntax to its𝕄-interpretation. Now, Ap𝔾(𝐹) is the generic model 𝐹∗(𝔾).
For ground types 𝐺 ∈ TV, recall from (ModTrans-Type-Base) that 𝐹∗(𝔾) interprets 𝐺 in 𝔾 through 𝐹:

J𝐺K
𝐹∗(𝔾)

= 𝐹(J𝐺K
𝔾) = 𝐹(𝐺) = J𝐺K

𝕄.

It suffices to define the model isomorphism by giving its base isomorphisms at ground types; let these
be identity isomorphisms

(𝜖𝕄)𝐺 ≔ idJ𝐺K𝕄
∶ J𝐺K

Ap𝔾(Ap
−1
𝔾 (𝕄)) = J𝐺K

𝕄 → J𝐺K
𝕄.

Now for the reverse direction, given a Cartesian closed functor 𝐹∶ Syn (T) → 𝒟, Ap𝔾(𝐹) is the
generic model 𝐹∗(𝔾), so Ap−1𝔾 (𝐹∗(𝔾)) gives a Cartesian closed functor Syn (T) → 𝒟mapping

𝐴 ↦ J𝐴K
𝐹∗(𝔾)

= 𝐹(J𝐴K
𝔾) = 𝐹(𝐴),

so we define 𝜂𝐹 to be the identity natural isomorphism, with components

(𝜂𝐹)𝐴 ≔ id𝐹(𝐴) ∶ 𝐹(𝐴) → 𝐹(𝐴).

�

This result is the crux of the categorical type theory correspondence, effectively stating that
𝜆�×-theories and Cartesian closed categories are notionally the same data.

Due to the strictness of Ap−1𝔾 (𝕄), we can prove an even stronger property.

Theorem 4.31 (Universal property of generic model). For all models𝕄 of a 𝜆�×-theory T in a
Cartesian closed category𝒞, there exists a Cartesian closed functor 𝐹∶ Syn (T) → 𝒞 such that 𝐹∗(𝔾) = 𝕄.
Such an 𝐹 is unique up to (canonical) isomorphism.

In other words, a 𝜆�×-model of T in a Cartesian closed category𝒞 is precisely characterised by a unique
functor from Syn (T) to 𝒞.

Proof. Take 𝐹 to be Ap−1𝔾 (𝕄). For all simple types 𝐴 of T,

J𝐴K
𝐹∗(𝔾)

= 𝐹(J𝐴K
𝔾) = 𝐹(𝐴) = J𝐴K

𝕄.

Similarly, for all closed terms ⊢ 𝑡 ∶ 𝐴,

J⊢ 𝑡 ∶ 𝐴K
𝐹∗(𝔾)

= 𝐹(J⊢ 𝑡 ∶ 𝐴K
𝔾) = 𝐹([⌜𝑡⌝

𝐴]
T
) = J⊢ 𝑡 ∶ 𝐴K

𝕄.

The first equalities arise from Proposition 4.15, but strictness of 𝐹 ensures that the isomorphism is an
equality.

Suppose 𝐺∶ Syn (T) → 𝒞 is a Cartesian closed functor such that 𝐺∗(𝔾) = 𝕄— we will show that
𝐹(𝑋) ≅ 𝐺(𝑋) necessarily: let 𝐴 be an object of Syn (T); then

𝐹(𝐴) = J𝐴K
𝕄 = J𝐴K

𝐺∗(𝔾)
≅ 𝐺(J𝐴K

𝔾) = 𝐺(𝐴).

Moreover, Proposition 4.15 constructs the isomorphism, so this induces a natural isomorphism and
hence 𝐹 ≅ 𝐺.

�

Although we only defined Ap−1𝔾 , it can be generalised to other models 𝕄; however, note that
Ap𝕄(Ap

−1
𝕄(ℕ)) is not necessarily equal toℕ: the corresponding objects of the structures are merely

required to be isomorphic to one another, except at the interpretations of ground types where strict
equality is required by (ModTrans-Type-Base). This occurs when the image of Ap−1𝕄 is a non-strict
Cartesian closed functor.
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Proposition 4.32. Every Cartesian closed category is equivalent to the syntactic category of its internal
language:

Syn 􏿴Lan (𝒞)􏿷 ≅ 𝒞 .

Proof. See Appendix B, page 60. �

At last we can prove the main result of this section.

Theorem 4.33 (Completeness of categorical semantics). Given a 𝜆�×-theory T, there exists a
unique (up to equivalence) category containing a model which minimally models T; that is, for terms-in-
context Γ ⊢ 𝑢 ∶ 𝐴 and Γ ⊢ 𝑣 ∶ 𝐴,

Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴 ⟸ JΓ ⊢ 𝑢 ∶ 𝐴K = JΓ ⊢ 𝑣 ∶ 𝐴K.

Proof. For existence, consider the classifying category Syn (T), and the model it contains is the
generic model 𝔾. To see that it satisfies the required property, first we must model Γ ⊢ 𝑢 ∶ 𝐴 in Syn (T),
associating to JΓ ⊢ 𝑢 ∶ 𝐴K some morphism JΓK = 𝐵1×⋯×𝐵𝑛 → 𝐴 = J𝐴K where Γ = [𝑥1∶𝐵1, … , 𝑥𝑛∶𝐵𝑛].
From Γ ⊢ 𝑢 ∶ 𝐴, repeatedly use the abs rule to give a closed term which can be associated to the
morphism J𝑢K = [⌜𝜆𝑥1∶𝐵1. … 𝜆𝑥𝑛∶𝐵𝑛.𝑢⌝

𝐵1→⋯→𝐵𝑛→𝐴]
T
∶ 1 = unit → 𝐵1 ⇒ ⋯ ⇒ 𝐵𝑛 ⇒ 𝐴. Now,

uncurry J𝑢K until the it has a codomain 𝐴, yielding J𝑢K′ = uncurry 􏿵… uncurry 􏿴J𝑢K􏿷􏿸 ∶ unit × 𝐵1 ×⋯×

𝐵𝑛 → 𝐴, which can be composed with the canonical isomorphisms induced by 1 × 𝑋 = unit × 𝑋
∼
−→ 𝑋

and (𝑋 × 𝑌) × 𝑍
∼
−→ 𝑋 × (𝑌 × 𝑍) for all objects 𝑋, 𝑌, and 𝑍 giving

JΓ ⊢ 𝑢 ∶ 𝐴K = JΓK = 𝐵1 ×⋯ × 𝐵𝑛
∼
−→ unit × (𝐵1 ×⋯ × 𝐵𝑛)

∼
−→ unit × 𝐵1 ×⋯ × 𝐵𝑛

J𝑢K′
−−−−→ 𝐴.

Γ ⊢ 𝑣 ∶ 𝐴 is modelled similarly. By assumption, JΓ ⊢ 𝑢 ∶ 𝐴K = JΓ ⊢ 𝑣 ∶ 𝐴K, and so J𝑢K′ = J𝑣K′. Hence
J𝑢K = J𝑣K, from which we can infer ⊢ 𝜆𝑥1∶𝐵1. … 𝜆𝑥𝑛∶𝐵𝑛.𝑢 = 𝜆𝑥1∶𝐵1. … 𝜆𝑥𝑛∶𝐵𝑛.𝑣 ∶ 𝐵1 →⋯→ 𝐵𝑛 → 𝐴.
But from the structure, such a derivation must have arisen via repeated application of the abs rule from
a derivation of [𝑥1∶𝐵1, … , 𝑥𝑛∶𝐵𝑛] = Γ ⊢ 𝑢 = 𝑣 ∶ 𝐴, which is exactly what was required.

To show uniqueness (up to equivalence), let 𝒞 be another category which satisfies the property; we
will show that it is equivalent to Syn (T). 𝒞minimally models T, so its internal language is T:

T = Lan (𝒞) .

By Proposition 4.32, we deduce that 𝒞 ≅ Syn 􏿴Lan (𝒞)􏿷 = Syn (T) as required.
�

This concludes our development of the completeness of categorical semantics for 𝜆�×-theories. For a
similar but far more terse approach, whereby 𝜆�×-theories themselves form categories under a suitable
notion of translation, consult Awodey & Bauer (2017 sec. 2.4).
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5 CONCLUSION

We have shown the precise way in which simply-typed 𝜆-calculi and Cartesian closed categories are ‘the
same’, namely that any 𝜆�×-theory can be modelled by any Cartesian closed category, and all models
uniquely factor through the generic model arising from the syntactic category, which is classifying.
Such a model is unique up to categorical equivalence, which is the appropriate notion of equality in
the context of categories. The constructions we have presented are entirely constructive, and yield a
canonical way to transform between 𝜆�×-theories and Cartesian closed categories: we have shown how
to freely construct the syntactic category from a 𝜆�×-theory, and how to generate the internal language
of a Cartesian closed category, which is guaranteed to be a 𝜆�×-theory.

5.1 Further work

Using this work as a base template for categorical semantics semantics of 𝜆-calculi, we can pursue
extensions inmanydirections. For richer type theories, like the polymorphic𝜆-calculus anddependently-
typed 𝜆-calculi, we can explore their categorical setting; unlike the case of simple-types, there are many
distinct approaches to this. Polymorphic 𝜆-calculus is treated by Crole (1993 Chapters 5–6) in a similar
spirit to this dissertation, and Jacobs (1999 Chapter 8) provides an account using fibred category theory.
For dependent type theories alone, Pitts (2001 p. 62) lists 9 different accounts, and the dust has still not
settled on which approach is definitive. Another interesting direction is the restriction of the simply-
typed 𝜆-calculus to type theories corresponding to substructural fragments of propositional logic: for
instance, the linear 𝜆-calculus, which can elegantly express various safety properties that programmers
will find useful, relates to symmetric monoidal categories in the same way (Abramsky & Tzevelekos
2010 p. 77).

This is still confining our attention on one edge of the Curry-Howard-Lambek correspondence, and
the other edges capture a wealth of information too much to adequately summarise.

In my view, what makes something a scientific discovery — in this realm — is you know that
it makes sense from all three points of view, and if you have a concept that makes sense from
all three points of view, it’s a permanent advance of the human intellect.

Robert Harper (2013) on computational trinitarianism
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A CARTESIAN CLOSED CATEGORIES EQUATIONALLY

In this section we make explicit the formulation of ‘Cartesian closed category’, adapted from Awodey
(2010 pp. 134–135).

Definition A.1 (Equational definition of a Cartesian closed category). A category 𝒞 is a Cartesian
closed category if and only if it has the following structure:

• A distinct object object 1, and for each object 𝑋 there is a given morphism

!𝑋 ∶ 𝑋 → 1

such that for each morphism 𝑓∶ 𝑋 → 1

𝑓 =!𝑋.

• For each pair of objects 𝑋, 𝑌, there is a given object 𝑋 × 𝑌 and morphisms

𝜋1 ∶ 𝑋 × 𝑌 → 𝑋 and 𝜋2 ∶ 𝑋 × 𝑌 → 𝑌

and for each pair of morphisms 𝑓∶ 𝑍 → 𝑋 and 𝑔 ∶ 𝑍 → 𝑌, there is a given morphism,

⟨𝑓, 𝑔⟩ ∶ 𝑍 → 𝑋 × 𝑌

such that

𝜋1 ∘ ⟨𝑓, 𝑔⟩ = 𝑓
𝜋2 ∘ ⟨𝑓, 𝑔⟩ = 𝑔

⟨𝜋2 ∘ ℎ, 𝜋2 ∘ ℎ⟩ = ℎ for all ℎ ∶ 𝑍 → 𝑋 × 𝑌.

• For each pair of objects 𝑋, 𝑌, there is a given object 𝑋 ⇒ 𝑌 and a morphism

ev𝑋,𝑌 ∶ 𝑋 ⇒ 𝑌 × 𝑋 → 𝑌

and for each morphism 𝑓∶ 𝑍 × 𝑋 → 𝑌, there is a given morphism

curry 􏿴𝑓􏿷 ∶ 𝑍 → 𝑋 ⇒ 𝑌

such that
ev𝑋,𝑌 ∘ curry 􏿴𝑓􏿷 × id𝑋 = 𝑓 (curry-∃)

and
curry 􏿴ev𝑋,𝑌 ∘ 𝑔 × id𝑋􏿷 = 𝑔 (curry-!)

for all 𝑔 ∶ 𝑍 → 𝑋 ⇒ 𝑌. We further define

uncurry 􏿴𝑔􏿷 ≔ ev𝑋,𝑌 ∘ 𝑔 × id𝑋.

• For any morphisms 𝑓∶ 𝑋 → 𝑈 and 𝑔 ∶ 𝑌 → 𝑉, we write13

𝑓 × 𝑔 ≔ ⟨𝑓 ∘ 𝜋1, 𝑔 ∘ 𝜋2⟩ ∶ 𝑋 × 𝑌 → 𝑈 × 𝑉,

𝑓 ⇒ 𝑔 ≔ curry 􏿴𝑔 ∘ ev𝑈,𝑌 ∘ id𝑈⇒𝑌 × 𝑓􏿷 ∶ 𝑈 ⇒ 𝑌 → 𝑋 ⇒ 𝑉.

Examining this, it is clear the first two points respectively assert the existence of a terminal object
and binary products; equivalently, 𝒞 has finite products.

(curry-∃) stipulates the existence of the ‘currying’ of every appropriately typed morphism. Using our
definition for uncurry in (curry-∃) yields

𝑓 = uncurry 􏿵curry 􏿴𝑓􏿷􏿸 ,

13Formally, this is the action of the bifunctors − × − and − ⇒ − on morphisms.
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and in (curry-!) yields

𝑔 = curry 􏿵uncurry 􏿴𝑔􏿷􏿸 ,

so (curry-!) specifies a uniqueness condition. Together, these equations are precisely the universal
property of exponential.

In the literature, Cartesian closed categories are often succinctly presented differently by means of
adjunctions, which is a very popular style of Category Theory. The following definition is from Leinster
(2016 p. 165).

Definition A.2 (Adjunctional definition of a Cartesian closed category). A category 𝒞 is Cartesian
closed if it has finite products, and for each object 𝑍 in𝒞, the functor −×𝑍∶ 𝒞 → 𝒞 has a right adjoint.

Such an adjoint is the exponential functor 𝑍 ⇒ −∶ 𝒞 → 𝒞, and the consequence of the adjunction
is that for all objects 𝑋, 𝑌, and 𝑍 of 𝒞,

𝒞 (𝑋 × 𝑍, 𝑌) ≅ 𝒞 (𝑋, 𝑍 ⇒ 𝑌)

naturally in 𝑋 and 𝑌.
We will make use of the following lemma in proving that the two definitions are equivalent.

Lemma A.3. In an equational Cartesian closed category, for all morphisms 𝑓∶ 𝑋 × 𝑍 → 𝑌,

curry 􏿴𝑓􏿷 = id𝑍 ⇒ 𝑓 ∘ curry 􏿴id𝑋×𝑍􏿷 .

Proof. Expand

id𝑍 ⇒ 𝑓=
curry 􏿴𝑓 ∘ ev𝑍,𝑋×𝑍 ∘ id𝑍⇒𝑋×𝑍 × id𝑍􏿷

= { bifunctoriality of − × − }

curry 􏿴𝑓 ∘ ev𝑍,𝑋×𝑍 ∘ id𝑍⇒𝑋×𝑍×𝑍􏿷

= { identity cancels through composition }

curry 􏿴𝑓 ∘ ev𝑍,𝑋×𝑍􏿷 ,

and observe that

uncurry 􏿵id𝑍 ⇒ 𝑓 ∘ curry 􏿴id𝑋×𝑍􏿷􏿸

= { uncurry }

ev𝑍,𝑌 ∘ (id𝑍 ⇒ 𝑓 ∘ curry 􏿴id𝑋×𝑍􏿷) × id𝑍
= { − × 𝑍 functor }

ev𝑍,𝑌 ∘ id𝑍 ⇒ 𝑓 × id𝑍 ∘ curry 􏿴id𝑋×𝑍􏿷 × id𝑍
= { above }

ev𝑍,𝑌 ∘ curry 􏿴𝑓 ∘ ev𝑍,𝑋×𝑍􏿷 × id𝑍 ∘ curry 􏿴id𝑋×𝑍􏿷 × id𝑍
= { (curry-∃) }
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𝑓 ∘ ev𝑍,𝑋×𝑍 ∘ curry 􏿴id𝑋×𝑍􏿷 × id𝑍
= { (curry-∃) }
𝑓 ∘ 𝑖𝑑𝑋 × 𝑍

= { identity cancels through composition }
𝑓

⟹ { apply curry to both sides }

curry 􏿴𝑓􏿷=
curry 􏿶uncurry 􏿵id𝑍 ⇒ 𝑓 ∘ curry 􏿴id𝑋×𝑍􏿷􏿸􏿹

= { universal property of exponential }

id𝑍 ⇒ 𝑓 ∘ curry 􏿴id𝑋×𝑍􏿷 .

�

It is not immediately obvious how the adjunction relates to the equational definition, but they are
indeed equivalent; explicitly, the adjunction stipulates an isomorphism between hom-sets

uncurry 􏿴𝑔􏿷 = 𝑓∶ 𝑋 × 𝑍 → 𝑌
∼
↦ curry 􏿴𝑓􏿷 = 𝑔 ∶ 𝑋 → 𝑍 ⇒ 𝑌.

These constructions are mutually inverse, so uncurry 􏿵curry 􏿴𝑓􏿷􏿸 = 𝑓 and curry 􏿵uncurry 􏿴𝑔􏿷􏿸 = 𝑔. It also
requires such an isomorphism to be natural in 𝑋 and 𝑌, which explicitly means that such that for all
morphisms 𝑔 ∶ 𝑈 → 𝑋, the following commutes

𝑈 𝑋

𝑍 ⇒ 𝑌

𝑔

curry􏿴𝑓∘𝑔×id𝑍􏿷
curry􏿴𝑓􏿷 (Nat-X)

and for all morphisms ℎ ∶ 𝑌 → 𝑉, the following commutes

𝑍 ⇒ 𝑌 𝑋

𝑍 ⇒ 𝑉

id𝑍⇒ℎ

curry􏿴𝑓􏿷

curry􏿴ℎ∘𝑓􏿷
(Nat-Y)

Theorem A.4. The two definitions of Cartesian closed category are equivalent.

Proof. It suffices to show that the conditions (curry-∃) and (curry-!) together are equivalent to the
adjunction; we do this in two directions.

For the forward direction, we previously justified the existence of curry and uncurry constructions
(as equations), and showed that they are mutually inverse, so it remains to show that the naturality
conditions hold. For (Nat-X):

curry 􏿴𝑓 ∘ 𝑔 × id𝑌􏿷

= { universal property of exponential }
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curry 􏿶uncurry 􏿵curry 􏿴𝑓􏿷􏿸 ∘ 𝑔 × id𝑌􏿹

= { uncurry }

curry 􏿵ev𝑌,𝑍 ∘ curry 􏿴𝑓􏿷 × id𝑌 ∘ 𝑔 × id𝑌􏿸

= { − × 𝑌 functor }

curry 􏿵ev𝑌,𝑍 ∘ (curry 􏿴𝑓􏿷 ∘ 𝑔) × id𝑌􏿸

= { uncurry }

curry 􏿶uncurry 􏿵curry 􏿴𝑓􏿷 ∘ 𝑔􏿸􏿹

= { universal property of exponential }

curry 􏿴𝑓􏿷 ∘ 𝑔.

Secondly, for (Nat-Y):

curry 􏿴ℎ ∘ 𝑓􏿷

= { Lemma A.3 }

id𝑍 ⇒ (ℎ ∘ 𝑓) ∘ curry 􏿴id𝑋×𝑍􏿷

= { 𝑍 ⇒ − functor }

id𝑍 ⇒ ℎ ∘ id𝑍 ⇒ 𝑓 ∘ curry 􏿴id𝑋×𝑍􏿷

= { Lemma A.3 }

id𝑍 ⇒ ℎ ∘ curry 􏿴𝑓􏿷 .

For the reverse direction, we assume the adjunction and derive (curry-∃) and (curry-!). Examining
(Nat-X), curry 􏿴𝑓 ∘ 𝑔 × id𝑍􏿷 = curry 􏿴𝑓􏿷 ∘ 𝑔, so we can take the ‘uncurrying’ to derive 𝑓 ∘ 𝑔 × id𝑍 =

uncurry 􏿵curry 􏿴𝑓􏿷 ∘ 𝑔􏿸.

ev𝑋,𝑌 ∘ curry 􏿴𝑓􏿷 × id𝑋
= { universal property of exponential }

uncurry 􏿵curry 􏿴ev𝑋,𝑌􏿷􏿸 ∘ curry 􏿴𝑓􏿷 × id𝑋

= { uncurrying of (Nat-X) }

uncurry 􏿵curry 􏿴id𝑌 ∘ ev𝑋,𝑌 ∘ id𝑋⇒𝑌×𝑋􏿷􏿸 ∘ curry 􏿴𝑓􏿷 × id𝑋

= { − × 𝑋 functorial }

uncurry 􏿵curry 􏿴id𝑌 ∘ ev𝑋,𝑌 ∘ id𝑋⇒𝑌 × id𝑋􏿷􏿸 ∘ curry 􏿴𝑓􏿷 × id𝑋

= { action of 𝑋 ⇒ − on id𝑌 }

uncurry 􏿴id𝑋 ⇒ id𝑌􏿷 ∘ curry 􏿴𝑓􏿷 × id𝑋
= { 𝑋 ⇒ 𝑌 functorial }
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uncurry 􏿴id𝑋⇒𝑌􏿷 ∘ curry 􏿴𝑓􏿷 × id𝑋
= { uncurrying of (Nat-X) }

uncurry 􏿶curry 􏿵uncurry 􏿴id𝑋⇒𝑌􏿷􏿸 ∘ curry 􏿴𝑓􏿷􏿹

= { universal property of exponential }

uncurry 􏿵id𝑋⇒𝑌 ∘ curry 􏿴𝑓􏿷􏿸

= { identities cancel through composition }

uncurry 􏿵curry 􏿴𝑓􏿷􏿸

= { universal property of exponential }
𝑓.

The proof for (curry-!) follows:

curry 􏿴ev𝑋,𝑌 ∘ 𝑔 × id𝑋􏿷

= { (Nat-X) }

curry 􏿴ev𝑋,𝑌􏿷 ∘ 𝑔

= { identity cancels through composition }

curry 􏿴id𝑌 ∘ ev𝑋,𝑌 ∘ id𝑋⇒𝑌×𝑋􏿷 ∘ 𝑔

= { − × 𝑋 functorial }

curry 􏿴id𝑌 ∘ ev𝑋,𝑌 ∘ id𝑋⇒𝑌 × id𝑋􏿷 ∘ 𝑔

= { action of 𝑋 ⇒ − functor on id𝑌 }
id𝑋 ⇒ id𝑌 ∘ 𝑔

= { 𝑋 ⇒ − functorial }
id𝑋⇒𝑌 ∘ 𝑔

= { identity cancels through composition }
𝑔.

�

It is also clear to see that (Nat-Y) corresponds to Lemma A.3.
This justifies that equational Cartesian closed categories and adjunctional Cartesian closed categories

are one and the same. Specifically concerning the 𝜆-calculus, the equational definition is much easier to
work with as equations translate more directly into 𝜆-terms than universal properties.
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B PROOFS

Proposition 4.12. The definition of model isomorphism suffices to define an isomorphism between
two models.

Proof. To prove this, we must illustrate that the composition of a model isomorphism and its inverse
in either direction is equal to the identity morphism. Given ℎ ∶ 𝕄 → ℕ, we construct its inverse
ℎ−1 ∶ ℕ → 𝕄 by taking the inverse of each base component of ℎ as base components:

ℎ−1𝑋 (𝑋) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ℎ−1𝐺 (J𝐺K
ℕ) if 𝑋 = J𝐺K

ℕ, 𝐺 ∈ TV,
(ℎ−1𝐴 × ℎ−1𝐵 )(J𝐴K

ℕ × J𝐵Kℕ) if 𝑋 = J𝐴 × 𝐵Kℕ, 𝐴 × 𝐵 ∈ ST (TV),
(ℎ𝐴 ⇒ ℎ−1𝐵 )(J𝐴K

ℕ ⇒ J𝐵Kℕ) if 𝑋 = J𝐴 → 𝐵Kℕ, 𝐴 → 𝐵 ∈ ST (TV).

Now, we proceed by induction on the simple types of T:
𝐺 ∈ TV case Immediate from the isomorphism of the components of ℎ at ground types. ◁
𝐴 × 𝐵 ∈ ST (TV) case

(ℎ−1𝐴 × ℎ−1𝐵 ) ∘ (ℎ𝐴 × ℎ𝐵)
= { bifunctoriality of × }

(ℎ−1𝐴 ∘ ℎ𝐴) × (ℎ−1𝐵 ∘ ℎ𝐵)
= { inductive hypothesis }

idJ𝐴K𝕄
× idJ𝐵K𝕄

= { bifunctoriality of × }
idJ𝐴K𝕄×J𝐵K𝕄

.

The reverse direction is exactly similar. ◁
𝐴 → 𝐵 ∈ ST (TV) case

(ℎ𝐴 ⇒ ℎ−1𝐵 ) ∘ (ℎ−1𝐴 ⇒ ℎ𝐵)
= { − ⇒ − contravariant in first argument, covariant in second }

(ℎ−1𝐴 ∘ ℎ𝐴 ⇒ ℎ−1𝐵 ∘ ℎ𝐵)
= { inductive hypothesis }
(idJ𝐴K𝕄

⇒ idJ𝐵K𝕄
)

= { definition of⇒ }

curry 􏿵idJ𝐵K𝕄
∘ evJ𝐴K𝕄,J𝐵K𝕄

∘ idJ𝐴K𝕄⇒J𝐵K𝕄
× idJ𝐴K𝕄

􏿸

= { definition of uncurry }

curry 􏿶idJ𝐵K𝕄
∘ uncurry 􏿵idJ𝐴K𝕄⇒J𝐵K𝕄

􏿸􏿹

= { id composition }

curry 􏿶uncurry 􏿵idJ𝐴K𝕄⇒J𝐵K𝕄
􏿸􏿹

= { universal property }
idJ𝐴K𝕄⇒J𝐵K𝕄
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and similarly for the reverse direction. ◁
�

Proposition 4.15. The interpretation of a type in 𝐹∗(𝕄) is isomorphic to the image of its interpretation
in𝕄 in 𝐹 (ModTrans-Type).

Proof. We construct explicit witness to the canonical isomorphism J𝐴K
𝐹∗(𝕄) ≅ 𝐹(J𝐴K

𝕄) by struc-
tural induction over 𝐴:

𝐴 = 𝐺 ∈ TV case Immediate from (ModTrans-Type-Base). ◁
𝐴 = 𝐵 × 𝐶 ∈ ST (TV) case

J𝐵 × 𝐶K
𝐹∗(𝕄)

= { (ModTrans-Type-×) }
J𝐵K𝐹∗(𝕄) × J𝐶K

𝐹∗(𝕄)

≅ { inductive hypothesis }
𝐹(J𝐵K𝕄) × 𝐹(J𝐶K

𝕄)

≅ { 𝐹 preserves finite products along Φ−1
J𝐵K𝕄×J𝐶K𝕄

}

𝐹(J𝐵K𝕄 × J𝐶K
𝕄)

= { (CatSem-×), as𝕄models T }
𝐹(J𝐵 × 𝐶K

𝕄).

◁
𝐴 = 𝐵 → 𝐶 ∈ ST (TV) case

J𝐵 → 𝐶K
𝐹∗(𝕄)

= { (ModTrans-Type-→) }
J𝐵K𝐹∗(𝕄) ⇒ J𝐶K

𝐹∗(𝕄)

≅ { inductive hypothesis }
𝐹(J𝐵K𝕄) ⇒ 𝐹(J𝐶K

𝕄)

≅ { 𝐹 preserves exponentials alongΨ−1
J𝐵K𝕄⇒J𝐶K𝕄

}

𝐹(J𝐵K𝕄 ⇒ J𝐶K
𝕄)

= { (CatSem-→), as𝕄models T }
𝐹({J𝐵 → 𝐶K

𝕄}).

◁
�

Proposition 4.16. Given a model𝕄 of T = (𝜎,A) in 𝒞, 𝐹∗(𝕄) is a well-defined model of T in𝒟.

Proof. For a model to be well-defined, we would like 𝐹∗(𝕄) to satisfy Definition 3.1.
Every simple type 𝐴 ∈ ST (TV) is interpreted by 𝐹∗(𝕄) by the canonical isomorphism given by

(ModTrans-Type).
The proof that the interpretation of typing contexts is well-defined is essentially the same as the proof

of the product case.
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Turning our attention to terms-in-context Γ ⊢ 𝑥 ∶ 𝐵 ofT, where JΓK𝐹∗(𝕄) = J𝐴1K𝐹∗(𝕄)×⋯×J𝐴𝑛K𝐹∗(𝕄),
we proceed by induction over the structure of JΓ ⊢ 𝑥 ∶ 𝐵K𝕄:

var case This implies that 𝐵 = 𝐴𝑖 for some 1 ≤ 𝑖 ≤ 𝑛, and so

JΓ + [𝑥∶𝐵] + Γ ′ ⊢ 𝑥 ∶ 𝐵K𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1𝐵 ∘ 𝐹(JΓ + [𝑥∶𝐵] + Γ ′ ⊢ 𝑥 ∶ 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { var rule, as𝕄models T }

𝑃−1𝐵 ∘ 𝐹(𝜋𝑖𝒞 ∶ JΓK𝕄 × J𝐵K𝕄 × JΓ ′K
𝕄 → J𝐵K𝕄) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { 𝐹 is a functor }

𝑃−1𝐵 ∘ (𝐹(𝜋𝑖𝒞) ∶ 𝐹(JΓK𝕄 × J𝐵K𝕄 × JΓ ′K
𝕄) → 𝐹(J𝐵K𝕄)) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of product }

𝑃−1𝐵 ∘ (𝜋𝑖𝒟 ∶ 𝐹(JΓK𝕄) × 𝐹(J𝐵K𝕄) × 𝐹(JΓ
′K
𝕄) → 𝐹(J𝐵K𝕄)) ∘ Φ

q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄

∘Φ−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { inverses cancel }

𝑃−1𝐵 ∘ (𝜋𝑖𝒟 ∶ 𝐹(JΓK𝕄) × 𝐹(J𝐵K𝕄) × 𝐹(JΓ
′K
𝕄) → 𝐹(J𝐵K𝕄)) ∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of product }

𝑃−1𝐵 ∘ 𝑃𝐵 ∘ 𝜋𝑖𝒟 ∶ JΓK𝐹∗(𝕄) × J𝐵K𝐹∗(𝕄) × JΓ ′K
𝐹∗(𝕄) → J𝐵K𝐹∗(𝕄)

= { inverses cancel }
𝜋𝑖𝒟 ∶ JΓK𝐹∗(𝕄) × J𝐵K𝐹∗(𝕄) × JΓ ′K

𝐹∗(𝕄) → J𝐵K𝐹∗(𝕄).

◁
unit case

JΓ ⊢ ⟨⟩ ∶ unitK𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1unit ∘ 𝐹(JΓ ⊢ ⟨⟩ ∶ unitK𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 ∶ JΓK𝐹∗(𝕄) → JunitK𝐹∗(𝕄)

= { (ModTrans-Type-unit) }

𝑃−1unit ∘ 𝐹(JΓ ⊢ ⟨⟩ ∶ unitK𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 ∶ JΓK𝐹∗(𝕄) → 1𝒟

= { universal property of terminal object }
!𝒟 ∶ JΓK𝐹∗(𝕄) → 1𝒟.

◁
const case

JΓ ⊢ 𝑐 ∶ 𝐴K
𝐹∗(𝕄)

= { (ModTrans-Term) }
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𝑃−1𝐴 ∘ 𝐹(JΓ ⊢ 𝑐 ∶ 𝐴K
𝕄) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { const rule, as𝕄models T }

𝑃−1𝐴 ∘ 𝐹(J𝑐K𝕄∘!𝒞) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { 𝐹 is a functor }

𝑃−1𝐴 ∘ 𝐹(J𝑐K𝕄) ∘ 𝐹(!𝒞) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of terminal object }

𝑃−1𝐴 ∘ 𝐹(J𝑐K𝕄) ∘ Φ
−1∘!𝒟

= { 𝑃unit = id1𝒟 , (ModTrans-FSym) }
J𝑐K𝐹∗(𝕄)∘!𝒟.

◁
func case

q
Γ ⊢ 𝑓(𝑡1, … , 𝑡𝑛) ∶ 𝐵

y
𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1𝐵 ∘ 𝐹(
q
Γ ⊢ 𝑓(𝑡1, … , 𝑡𝑛) ∶ 𝐵

y
𝕄
) ∘ Φ−1q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { func rule, as𝕄models T }

𝑃−1𝐵 ∘ 𝐹(
q
𝑓
y
𝕄
∘ ⟨J𝑡1K𝕄, … , J𝑡𝑛K𝕄⟩) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { 𝐹 is a functor }

𝑃−1𝐵 ∘ 𝐹(
q
𝑓
y
𝕄
) ∘ 𝐹(⟨J𝑡1K𝕄, … , J𝑡𝑛K𝕄⟩) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of product }

𝑃−1𝐵 ∘ 𝐹(
q
𝑓
y
𝕄
) ∘ Φ−1q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ ⟨𝐹(J𝑡1K𝕄), … , 𝐹(J𝑡𝑛K𝕄)⟩ ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { inverses cancel }

𝑃−1𝐵 ∘ 𝐹(
q
𝑓
y
𝕄
) ∘ Φ−1q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

∘𝑃−1𝐴1
×⋯ × 𝑃−1𝐴𝑛

∘ ⟨𝐹(J𝑡1K𝕄), … , 𝐹(J𝑡𝑛K𝕄)⟩ ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { (ModTrans-FSym) }
q
𝑓
y
𝐹∗(𝕄)

∘ 𝑃−1𝐴1
×⋯ × 𝑃−1𝐴𝑛

∘ ⟨𝐹(J𝑡1K𝕄), … , 𝐹(J𝑡𝑛K𝕄)⟩ ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { composition over products }
q
𝑓
y
𝐹∗(𝕄)

∘ ⟨𝑃−1𝐴1
∘ 𝐹(J𝑡1K𝕄) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 ,

… , 𝑃−1𝐴𝑛
∘ 𝐹(J𝑡𝑛K𝕄) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛⟩

= { (ModTrans-Term) }
q
𝑓
y
𝐹∗(𝕄)

∘ ⟨J𝑡1K𝐹∗(𝕄), … , J𝑡𝑛K𝐹∗(𝕄)⟩.

◁
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abs case

JΓ ⊢ (𝜆𝑥∶𝐴.𝑡) ∶ 𝐴 → 𝐵K𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1𝐴→𝐵 ∘ 𝐹(JΓ ⊢ (𝜆𝑥∶𝐴.𝑡) ∶ 𝐴 → 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { abs rule, as𝕄models T }

𝑃−1𝐴→𝐵 ∘ 𝐹(curry 􏿵JΓ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐵K𝕄􏿸) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of exponential }

curry 􏿶𝑃−1𝐵 ∘ 𝐹(JΓ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄×J𝐴K𝕄

∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 × 𝑃𝐴􏿹

= { (ModTrans-Term) }

curry 􏿵JΓ + [𝑥∶𝐴] ⊢ 𝑡 ∶ 𝐵K𝐹∗(𝕄)
􏿸 .

◁
app case

JΓ ⊢ 𝑢𝑣 ∶ 𝐵K𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1𝐵 ∘ 𝐹(JΓ ⊢ 𝑢𝑣 ∶ 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { app rule, as𝕄models T }

𝑃−1𝐵 ∘ 𝐹(evJ𝐴K𝕄,J𝐵K𝕄
∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝕄, JΓ ⊢ 𝑣 ∶ 𝐴K

𝕄⟩) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { 𝐹 is a functor }

𝑃−1𝐵 ∘ 𝐹(evJ𝐴K𝕄,J𝐵K𝕄
) ∘ 𝐹(⟨JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝕄, JΓ ⊢ 𝑣 ∶ 𝐴K

𝕄⟩) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of product }

𝑃−1𝐵 ∘ 𝐹(evJ𝐴K𝕄,J𝐵K𝕄
) ∘ Φ−1

J𝐴→𝐵K𝕄×J𝐴K𝕄

∘⟨𝐹(JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝕄), 𝐹(JΓ ⊢ 𝑣 ∶ 𝐴K
𝕄)⟩ ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { inverses cancel }

𝑃−1𝐵 ∘ 𝐹(evJ𝐴K𝕄,J𝐵K𝕄
) ∘ Φ−1

J𝐴→𝐵K𝕄×J𝐴K𝕄
∘ 𝑃𝐴→𝐵 × 𝑃𝐴

∘𝑃−1𝐴→𝐵 × 𝑃−1𝐴 ∘ ⟨𝐹(JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝕄), 𝐹(JΓ ⊢ 𝑣 ∶ 𝐴K
𝕄)⟩ ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { composition over product }

𝑃−1𝐵 ∘ 𝐹(evJ𝐴K𝕄,J𝐵K𝕄
) ∘ Φ−1

J𝐴→𝐵K𝕄×J𝐴K𝕄
∘ 𝑃𝐴→𝐵 × 𝑃𝐴

∘⟨𝑃−1𝐴→𝐵 ∘ 𝐹(JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 ,

𝑃−1𝐴 ∘ 𝐹(JΓ ⊢ 𝑣 ∶ 𝐴K
𝕄 ∘ Φ−1q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛)⟩

= { (ModTrans-Term) }
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𝑃−1𝐵 ∘ 𝐹(evJ𝐴K𝕄,J𝐵K𝕄
) ∘ Φ−1

J𝐴→𝐵K𝕄×J𝐴K𝕄
∘ 𝑃𝐴→𝐵 × 𝑃𝐴 ∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝐹∗(𝕄), JΓ ⊢ 𝑣 ∶ 𝐴K

𝐹∗(𝕄)⟩

= { inductive hypothesis: J𝐴 → 𝐵K𝐹∗(𝕄) = J𝐴K
𝐹∗(𝕄) ⇒ J𝐵K𝐹∗(𝕄), universal property of exponential }

evJ𝐴K𝐹∗(𝕄),J𝐵K𝐹∗(𝕄)
∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐴 → 𝐵K𝐹∗(𝕄), JΓ ⊢ 𝑣 ∶ 𝐴K

𝐹∗(𝕄)⟩.

◁
pair case

JΓ ⊢ ⟨𝑢, 𝑣⟩ ∶ 𝐴 × 𝐵K𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1𝐴×𝐵 ∘ 𝐹(JΓ ⊢ ⟨𝑢, 𝑣⟩ ∶ 𝐴 × 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { pair rule, as𝕄models T }

𝑃−1𝐴×𝐵 ∘ 𝐹(⟨JΓ ⊢ 𝑢 ∶ 𝐴K
𝕄, JΓ ⊢ 𝑣 ∶ 𝐵K𝕄⟩) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { universal property of product }

𝑃−1𝐴×𝐵 ∘ Φ−1
J𝐴K𝕄×J𝐵K𝕄

∘ ⟨𝐹(JΓ ⊢ 𝑢 ∶ 𝐴K
𝕄), 𝐹(JΓ ⊢ 𝑣 ∶ 𝐵K𝕄)⟩ ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { inductive hypothesis: J𝐴 × 𝐵K𝐹∗(𝕄) = J𝐴 × 𝐵K𝐹∗(𝕄), 𝑃
−1
𝐴×𝐵 = 𝑃−1𝐴 × 𝑃−1𝐵 ∘ ΦJ𝐴K𝕄×J𝐵K𝕄

by canonicity }

𝑃−1𝐴 × 𝑃−1𝐵 ∘ ΦJ𝐴K𝕄×J𝐵K𝕄
∘ Φ−1

J𝐴K𝕄×J𝐵K𝕄
∘ ⟨𝐹(JΓ ⊢ 𝑢 ∶ 𝐴K

𝕄), 𝐹(JΓ ⊢ 𝑣 ∶ 𝐵K𝕄)⟩

∘Φ−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { inverses cancel }

𝑃−1𝐴 × 𝑃−1𝐵 ∘ ⟨𝐹(JΓ ⊢ 𝑢 ∶ 𝐴K
𝕄), 𝐹(JΓ ⊢ 𝑣 ∶ 𝐵K𝕄)⟩ ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { composition over product }

⟨𝑃−1𝐴 ∘ 𝐹(JΓ ⊢ 𝑢 ∶ 𝐴K
𝕄) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛 ,

𝑃−1𝐵 ∘ 𝐹(JΓ ⊢ 𝑣 ∶ 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛⟩

= { (ModTrans-Term) }
⟨JΓ ⊢ 𝑢 ∶ 𝐴K

𝐹∗(𝕄), JΓ ⊢ 𝑣 ∶ 𝐵K𝐹∗(𝕄)⟩.

◁
fst, snd case

JΓ ⊢ fst (𝑡) ∶ 𝐴K
𝐹∗(𝕄)

= { (ModTrans-Term) }

𝑃−1𝐴 ∘ 𝐹(JΓ ⊢ fst (𝑡) ∶ 𝐴K
𝕄) ∘ Φ

−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { fst rule, as𝕄models T }

𝑃−1𝐴 ∘ 𝐹(𝜋1𝒞 ∘ JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { 𝐹 is a functor }

𝑃−1𝐴 ∘ 𝐹(𝜋1𝒞) ∘ 𝐹(JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { inductive hypothesis: J𝐴 × 𝐵K𝐹∗(𝕄) = J𝐴 × 𝐵K𝐹∗(𝕄), universal property of product }
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𝜋1𝒟 ∘ 𝑃−1𝐴×𝐵 ∘ 𝐹(JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K𝕄) ∘ Φ
−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1 ×⋯ × 𝑃𝐴𝑛

= { (ModTrans-Term) }
𝜋1𝒟 ∘ JΓ ⊢ 𝑡 ∶ 𝐴 × 𝐵K𝐹∗(𝕄).

The case for snd is similar. ◁
Therefore, we deduce that the collection of objects and morphisms obtained in𝒟, 𝐹∗(𝕄), is a model

of T by the Soundness Theorem, as it is a structure of 𝜎 in𝒟.
�

Proposition 4.19. Given a model isomorphism ℎ ∶ 𝕄
∼
−→ ℕ, for all 𝐴 ∈ ST (TV),

𝐹∗(ℎ)𝐴 ∶ J𝐴K
𝐹∗(𝕄)

∼
−→ J𝐴K

𝐹∗(ℕ) = 𝑃
−1
𝐴 ℕ ∘ 𝐹(ℎ𝐴) ∘ 𝑃𝐴𝕄. (ModTrans-MIso)

Proof. By induction over 𝐴.
𝐴 = 𝐺 ∈ TV case Immediate from (ModTrans-MIso-Base) (recall that 𝑃𝐺 is an identity morphism).

◁
𝐴 = 𝐵 × 𝐶 ∈ ST (TV) case

𝐹∗(ℎ)𝐵×𝐶
= { (MIso-Components) }
𝐹∗(ℎ)𝐵 × 𝐹∗(ℎ)𝐶

= { inductive hypothesis }

𝑃−1𝐵 ℕ ∘ 𝐹(ℎ𝐵) ∘ 𝑃𝐵𝕄 × 𝑃−1𝐶 ℕ
∘ 𝐹(ℎ𝐶) ∘ 𝑃𝐶𝕄

= { bifunctoriality of − × − }

𝑃−1𝐵 ℕ × 𝑃−1𝐶 ℕ
∘ 𝐹(ℎ𝐵) × 𝐹(ℎ𝐶) ∘ 𝑃𝐵𝕄 × 𝑃𝐶𝕄

= { Lemma 4.4 }

𝑃−1𝐵 ℕ × 𝑃−1𝐶 ℕ
∘ ΦJ𝐵Kℕ×J𝐶Kℕ

∘ 𝐹(ℎ𝐵 × ℎ𝐶) ∘ Φ−1
J𝐵K𝕄×J𝐶K𝕄

∘ 𝑃𝐵𝕄 × 𝑃𝐶𝕄
= { Lemma 4.17 }

𝑃−1𝐵×𝐶ℕ ∘ 𝐹(ℎ𝐵 × ℎ𝐶) ∘ 𝑃𝐵×𝐶𝕄
= { (MIso-Components) }

𝑃−1𝐵×𝐶ℕ ∘ 𝐹(ℎ𝐵×𝐶) ∘ 𝑃𝐵×𝐶𝕄.

◁
𝐴 = 𝐵 → 𝐶 ∈ ST (TV) case

𝐹∗(ℎ)𝐵⇒𝐶

= { (MIso-Components) }
(𝐹∗(ℎ)𝐵)−1 ⇒ 𝐹∗(ℎ)𝐶

= { inductive hypothesis }

(𝑃−1𝐵 ℕ ∘ 𝐹(ℎ𝐵) ∘ 𝑃𝐵𝕄)
−1 ⇒ 𝑃−1𝐶 ℕ

∘ 𝐹(ℎ𝐶) ∘ 𝑃𝐶𝕄
= { (𝑃−1𝐵 ℕ ∘ 𝐹(ℎ𝐵) ∘ 𝑃𝐵𝕄)

−1 = 𝑃−1𝐵 𝕄 ∘ 𝐹(ℎ𝐵)
−1 ∘ 𝑃𝐵ℕ }
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𝑃−1𝐵 𝕄 ∘ 𝐹(ℎ𝐵)
−1 ∘ 𝑃𝐵ℕ ⇒ 𝑃−1𝐶 ℕ

∘ 𝐹(ℎ𝐶) ∘ 𝑃𝐶𝕄
= { 𝐹 is a functor, so it preserve isomorphisms }

𝑃−1𝐵 𝕄 ∘ 𝐹(ℎ−1𝐵 ) ∘ 𝑃𝐵ℕ ⇒ 𝑃−1𝐶 ℕ
∘ 𝐹(ℎ𝐶) ∘ 𝑃𝐶𝕄

= { bifunctoriality of − ⇒ −, contravariant in first argument }

𝑃𝐵ℕ ⇒ 𝑃−1𝐶 ℕ
∘ 𝐹(ℎ−1𝐵 ) ⇒ 𝐹(ℎ𝐶) ∘ 𝑃−1𝐵 𝕄 ⇒ 𝑃𝐶𝕄

= { Lemma 4.6 }

𝑃𝐵ℕ ⇒ 𝑃−1𝐶 ℕ
∘ ΨJ𝐵Kℕ⇒J𝐶Kℕ

∘ 𝐹(ℎ−1𝐵 ⇒ ℎ𝐶) ∘ Ψ−1
J𝐵K𝕄⇒J𝐶K𝕄

∘ 𝑃−1𝐵 𝕄 ⇒ 𝑃𝐶𝕄
= { Lemma 4.18 }

𝑃−1𝐵→𝐶ℕ
∘ 𝐹(ℎ−1𝐵 ⇒ ℎ𝐶) ∘ 𝑃𝐵→𝐶𝕄

= { (MIso-Components) }

𝑃−1𝐵→𝐶ℕ
∘ 𝐹(ℎ𝐵⇒𝐶) ∘ 𝑃𝐵→𝐶𝕄.

◁
�

Proposition 4.21. Given a model isomorphism ℎ ∶ 𝕄 → ℕ, 𝐹∗(ℎ) ∶ 𝐹∗(𝕄) → 𝐹∗(ℕ) is a model
isomorphism.

Proof. First, we establish that 𝐹∗(ℎ) is a valid model homomorphism, satisfying Definition 4.10. The
first commutativity condition we must fulfil is

J𝐴1K𝐹∗(𝕄) ×⋯ × J𝐴𝑛K𝐹∗(𝕄)
J𝐵K𝐹∗(𝕄)

J𝐴1K𝐹∗(ℕ) ×⋯ × J𝐴𝑛K𝐹∗(ℕ)
J𝐵K𝐹∗(ℕ)

𝐹∗(ℎ)𝐴1
×⋯×𝐹∗(ℎ)𝐴𝑛

q
𝑓
y
𝐹∗(𝕄)

𝐹∗(ℎ)𝐵

q
𝑓
y
𝐹∗(ℕ)

𝐹∗(ℎ)𝐵 ∘
q
𝑓
y
𝐹∗(𝕄)

= { (ModTrans-MIso), (ModTrans-FSym) }

𝑃−1𝐵 ℕ ∘ 𝐹(ℎ𝐵) ∘ 𝑃𝐵𝕄 ∘ 𝑃−1𝐵 𝕄 ∘ 𝐹(
q
𝑓
y
𝕄
) ∘ Φ−1q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ 𝑃𝐴1𝕄

×⋯ × 𝑃𝐴𝑛𝕄

= { inverses cancel, Lemma 4.17 }

𝑃−1𝐵 ℕ ∘ 𝐹(ℎ𝐵) ∘ 𝐹(
q
𝑓
y
𝕄
) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { 𝐹 is a functor }

𝑃−1𝐵 ℕ ∘ 𝐹(ℎ𝐵 ∘
q
𝑓
y
𝕄
) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { ℎ is a model homomorphism }

𝑃−1𝐵 ℕ ∘ 𝐹(
q
𝑓
y
ℕ
∘ ℎ𝐴1 ×⋯ × ℎ𝐴𝑛) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { (MIso-Components) }
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𝑃−1𝐵 ℕ ∘ 𝐹(
q
𝑓
y
ℕ
∘ ℎ𝐴1×⋯×𝐴𝑛) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { 𝐹 is a functor }

𝑃−1𝐵 ℕ ∘ 𝐹(
q
𝑓
y
ℕ
) ∘ 𝐹(ℎ𝐴1×⋯×𝐴𝑛) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { inverses cancel }

𝑃−1𝐵 ℕ ∘ 𝐹(
q
𝑓
y
ℕ
) ∘ Φ−1q

𝐴1
y
ℕ×⋯×

q
𝐴𝑛

y
ℕ
∘ Φq

𝐴1
y
ℕ×⋯×

q
𝐴𝑛

y
ℕ
∘ 𝐹(ℎ𝐴1×⋯×𝐴𝑛) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { inverses cancel }

𝑃−1𝐵 ℕ ∘ 𝐹(
q
𝑓
y
ℕ
) ∘ Φ−1q

𝐴1
y
ℕ×⋯×

q
𝐴𝑛

y
ℕ
∘ 𝑃𝐴1ℕ

×⋯ × 𝑃𝐴𝑛ℕ

∘𝑃−1𝐴1ℕ
×⋯ × 𝑃−1𝐴𝑛ℕ

∘ Φq
𝐴1

y
ℕ×⋯×

q
𝐴𝑛

y
ℕ
∘ 𝐹(ℎ𝐴1×⋯×𝐴𝑛) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { Lemma 4.17 }

𝑃−1𝐵 ℕ ∘ 𝐹(
q
𝑓
y
ℕ
) ∘ Φ−1q

𝐴1
y
ℕ×⋯×

q
𝐴𝑛

y
ℕ
∘ 𝑃𝐴1ℕ

×⋯ × 𝑃𝐴𝑛ℕ

∘𝑃−1𝐴1×⋯×𝐴𝑛ℕ
∘ 𝐹(ℎ𝐴1×⋯×𝐴𝑛) ∘ 𝑃𝐴1×⋯×𝐴𝑛𝕄

= { (ModTrans-FSym), (ModTrans-MIso) }
q
𝑓
y
𝐹∗(ℕ)

∘ 𝐹∗(ℎ)𝐴1×⋯×𝐴𝑛
.

The remaining proof cases proceed similarly.
This establishes that 𝐹∗(ℎ) is a valid model homomorphism; as the each base component 𝐹∗(ℎ)𝐺 is

𝐹(ℎ𝐺), and as functors preserve isomorphisms, 𝐹∗(ℎ) is a model isomorphism by Proposition 4.12.
�

Proposition 4.23. 𝜙∗𝕄 is a model isomorphism.

Proof. By Proposition 4.16, 𝐹∗(𝕄) and 𝐸∗(𝕄) are both models of T in𝒟. We seek to fulfil

J𝐴1K𝐹∗(𝕄) ×⋯ × J𝐴𝑛K𝐹∗(𝕄)
J𝐵K𝐹∗(𝕄)

J𝐴1K𝐸∗(𝕄) ×⋯ × J𝐴𝑛K𝐸∗(𝕄)
J𝐵K𝐸∗(𝕄)

𝜙∗𝕄𝐴1
×⋯×𝜙∗𝕄𝐴𝑛

q
𝑓
y
𝐹∗(𝕄)

𝜙∗𝕄𝐵

q
𝑓
y
𝐸∗(𝕄)

Expanding
q
𝑓
y
𝐹∗(𝕄)

by (ModTrans-FSym) yields14

𝐹(J𝐴1K𝕄) × ⋯ × 𝐹(J𝐴𝑛K𝕄) 𝐹(J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄) 𝐹(J𝐵K𝕄)

𝐸(J𝐴1K𝕄) × ⋯ × 𝐸(J𝐴𝑛K𝕄) 𝐸(J𝐴1K𝕄 ×⋯ × J𝐴𝑛K𝕄) 𝐸(J𝐵K𝕄)

Φ−1q
𝐴1

y
𝕄×⋯×J𝐴𝑛K𝕄𝐹

𝜙q
𝐴1

y
𝕄
×⋯×𝜙J𝐴𝑛K𝕄 1

𝐹(
q
𝑓
y
𝕄)

𝜙q
𝐴1

y
𝕄×⋯×J𝐴𝑛K𝕄 2 𝜙J𝐵K𝕄

Φ−1q
𝐴1

y
𝕄×⋯×J𝐴𝑛K𝕄𝐸

𝐸(
q
𝑓
y
𝕄)

14The isomorphisms J𝐴1K𝐹∗(𝕄) ×⋯ × J𝐴𝑛K𝐹∗(𝕄)
∼
−−→ 𝐹(J𝐴1K𝕄) × ⋯ × 𝐹(J𝐴𝑛K𝕄), and 𝐹(J𝐵K𝕄)

∼
−−→ J𝐵K𝐹∗(𝕄), and their corres-

pondents for 𝐸 have been elided.
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The commutativity of 2 follows from the naturality of 𝜙, so it suffices to show that 1 commutes. By
naturality, we have the following for each 1 ≤ 𝑖 ≤ 𝑛

𝐹(J𝐴1K𝕄) × ⋯ × 𝐹(J𝐴𝑛K𝕄) 𝐹(J𝐴𝑖K𝕄)

𝐸(J𝐴1K𝕄) × ⋯ × 𝐸(J𝐴𝑛K𝕄) 𝐸(J𝐴𝑖K𝕄)

𝐹(𝜋𝑖)

𝜙q
𝐴1

y
𝕄×⋯×J𝐴𝑛K𝕄

𝜙q
𝐴𝑖

y
𝕄

𝐸(𝜋𝑖)

and so

𝜙q
𝐴1

y
𝕄
×⋯ × 𝜙q

𝐴𝑛
y
𝕄
∘ Φq

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄𝐹

= { (PP-Functor) }
𝜙q

𝐴1
y
𝕄
×⋯ × 𝜙q

𝐴𝑛
y
𝕄
∘ ⟨𝐹(𝜋1), … , 𝐹(𝜋𝑛)⟩

= { composition through products }
⟨𝜙q

𝐴1
y
𝕄
∘ 𝐹(𝜋1), … , 𝜙q

𝐴𝑛
y
𝕄
∘ 𝐹(𝜋𝑛)⟩

= { naturality of 𝜙 (above) }
⟨𝐸(𝜋1) ∘ 𝜙q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
, 𝐸(𝜋𝑛) ∘ 𝜙q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
⟩

= { composition through products }
⟨𝐸(𝜋1), … , 𝐸(𝜋𝑛)⟩ ∘ 𝜙q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄

= { (PP-Functor) }
Φq

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄𝐸

∘ 𝜙q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄

⟹ { pre-composition by Φ−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄𝐸

, post-composition by Φ−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄𝐹

}

Φ−1q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄𝐸

∘ 𝜙q
𝐴1

y
𝕄
×⋯ × 𝜙q

𝐴𝑛
y
𝕄=

𝜙q
𝐴1

y
𝕄×⋯×

q
𝐴𝑛

y
𝕄
∘ Φ−1q

𝐴1
y
𝕄×⋯×

q
𝐴𝑛

y
𝕄𝐹

as required. The other proof cases follow analogously.
As 𝜙 is a natural isomorphism, its components are all isomorphisms; in particular, the base compon-

ents of 𝜙∗𝕄 are all isomorphisms, so by Proposition 4.12 it is a model isomorphism.
�

Proposition 4.29. Given a model isomorphism ℎ ∶ 𝕄 → ℕ, Ap−1𝔾 (ℎ) is a natural isomorphism.

Proof. The naturality square we must fulfil is

Ap−1𝔾 (𝕄)(𝐴) = J𝐴K
𝕄

J𝐵K𝕄 = Ap−1𝔾 (𝕄)(𝐵)

Ap−1𝔾 (ℕ)(𝐴) = J𝐴K
ℕ

J𝐵Kℕ = Ap−1𝔾 (ℕ)(𝐵)

Ap−1𝔾 (𝕄)([⌜𝑡⌝𝐴→𝐵]
T
)=J⊢𝑡∶𝐴→𝐵K𝕄

ℎ𝐴 ℎ𝐵

Ap−1𝔾 (ℕ)([⌜𝑡⌝𝐴→𝐵]
T
)=J⊢𝑡∶𝐴→𝐵Kℕ
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Instead, we focus on the more general property

JΓK𝕄 J𝐴K
𝕄

JΓKℕ J𝐴K
ℕ

JΓ⊢𝑡∶𝐴K𝕄

ℎΓ ℎ𝐴

JΓ⊢𝑡∶𝐴Kℕ

which will imply what is required.
We proceed by induction on the derivation of Γ ⊢ 𝑡 ∶ 𝐴.
var case

JΓ + [𝑡∶𝐴] + Γ ′ ⊢ 𝑡 ∶ 𝐴K
ℕ ∘ ℎΓ+[𝑡∶𝐴]+Γ′

= { var rule, (MIso-Components) }
𝜋𝑖 ∘ ℎΓ × ℎ𝐴 × ℎΓ′

= { action of − × − bifunctor on morphisms }
𝜋𝑖 ∘ ⟨… , ℎ𝐴 ∘ 𝜋𝑖, … ⟩

= { universal property of product }
ℎ𝐴 ∘ 𝜋𝑖

= { var rule }
ℎ𝐴 ∘ JΓ + [𝑡∶𝐴] + Γ ′ ⊢ 𝑡 ∶ 𝐴K

𝕄.

◁
unit case Then 𝑡 = ⟨⟩ and 𝐴 = unit, so ℎunit ∶ unit → unit = idunit by the universal property of

terminal object, and

JΓ ⊢ ⟨⟩ ∶ unitKℕ ∘ ℎΓ
= { unit rule, (MIso-Components) }
!JΓKℕ ∘ ℎΓ

= { universal property of terminal object }
!JΓK𝕄

= { identity cancels through composition }
ℎunit∘!

= { unit rule }
ℎunit ∘ JΓ ⊢ ⟨⟩ ∶ unitK𝕄.

◁
const case

JΓ ⊢ 𝑡 ∶ 𝐴K
ℕ ∘ ℎΓ

= { const rule }
J𝑡Kℕ∘!JΓKℕ ∘ ℎΓ

= { universal property of terminal object }
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J𝑡Kℕ∘!JΓK𝕄
= { (MHom-Const) }
ℎ𝐴 ∘ J𝑡K𝕄∘!JΓK𝕄

= { const rule }
ℎ𝐴 ∘ JΓ ⊢ 𝑡 ∶ 𝐴K

𝕄.

◁
func case Then 𝑡 = 𝑓(𝑢1, … , 𝑢𝑛) for each Γ ⊢ 𝑢𝑖 ∶ 𝐵𝑖, and

q
Γ ⊢ 𝑓(𝑢1, … , 𝑢𝑛) ∶ 𝐴

y
ℕ
∘ ℎΓ

= { func rule }
q
𝑓
y
ℕ
∘ ⟨JΓ ⊢ 𝑢1 ∶ 𝐵1Kℕ, … , JΓ ⊢ 𝑢𝑛 ∶ 𝐵𝑛Kℕ⟩ ∘ ℎΓ

= { composition distributes over product }
q
𝑓
y
ℕ
∘ ⟨JΓ ⊢ 𝑢1 ∶ 𝐵1Kℕ ∘ ℎΓ, … , JΓ ⊢ 𝑢𝑛 ∶ 𝐵𝑛Kℕ ∘ ℎΓ⟩

= { inductive hypothesis }
q
𝑓
y
ℕ
∘ ⟨ℎ𝐵1 ∘ JΓ ⊢ 𝑢1 ∶ 𝐵1K𝕄, … , ℎ𝐵𝑛 ∘ JΓ ⊢ 𝑢𝑛 ∶ 𝐵𝑛Kℕ⟩

= { composition distributes over product }
q
𝑓
y
ℕ
∘ ℎ𝐵1 ×⋯ × ℎ𝐵𝑛 ∘ ⟨JΓ ⊢ 𝑢1 ∶ 𝐵1K𝕄, … , JΓ ⊢ 𝑢𝑛 ∶ 𝐵𝑛Kℕ⟩

= { (MIso-Components) }
q
𝑓
y
ℕ
∘ ℎ𝐵1×⋯×𝐵𝑛 ∘ ⟨JΓ ⊢ 𝑢1 ∶ 𝐵1K𝕄, … , JΓ ⊢ 𝑢𝑛 ∶ 𝐵𝑛Kℕ⟩

= { (MHom-Func) }

ℎ𝐴 ∘
q
𝑓
y
𝕄
∘ ⟨JΓ ⊢ 𝑢1 ∶ 𝐵1K𝕄, … , JΓ ⊢ 𝑢𝑛 ∶ 𝐵𝑛Kℕ⟩

= { func rule }

ℎ𝐴 ∘
q
Γ ⊢ 𝑓(𝑢1, … , 𝑢𝑛) ∶ 𝐴

y
𝕄
.

◁
abs case Then 𝑡 = 𝜆𝑥∶𝐵.𝑢 and 𝐴 = 𝐵 → 𝐶 for some Γ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶, and

JΓ ⊢ 𝜆𝑥∶𝐵.𝑢 ∶ 𝐵 → 𝐶K
ℕ ∘ ℎΓ

= { abs rule }

curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
ℕ
􏿸 ∘ ℎΓ

= { naturality of exponential }

curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
ℕ ∘ ℎΓ × idJ𝐵Kℕ

􏿸

= { inverses cancel }

curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
ℕ ∘ ℎΓ × (ℎ𝐵 ∘ ℎ−1𝐵 )􏿸

= { − × − bifunctorial }
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curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
ℕ ∘ ℎΓ × ℎ𝐵 ∘ idJΓK𝕄

× ℎ−1𝐵 􏿸

= { (MIso-Components) }

curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
ℕ ∘ ℎΓ×𝐵 ∘ idJΓK𝕄

× ℎ−1𝐵 􏿸

= { inductive hypothesis }

curry 􏿵ℎ𝐶 ∘ JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
𝕄 ∘ idJΓK𝕄

× ℎ−1𝐵 􏿸

= { universal property of exponential }

curry

⎛
⎜⎜⎜⎝ℎ𝐶 ∘ uncurry 􏿶curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K

𝕄
􏿸􏿹 ∘ idJΓK𝕄

× ℎ−1𝐵

⎞
⎟⎟⎟⎠

= { uncurry }

curry 􏿶ℎ𝐶 ∘ evJ𝐵K𝕄,J𝐶K𝕄
∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K

𝕄
􏿸 × idJ𝐵K𝕄

∘ idJΓK𝕄
× ℎ−1𝐵 􏿹

= { − × − interchange }

curry 􏿶ℎ𝐶 ∘ evJ𝐵K𝕄,J𝐶K𝕄
∘ idJ𝐵K𝕄⇒J𝐶K𝕄

× ℎ−1𝐵 ∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
𝕄
􏿸 × idJ𝐵Kℕ􏿹

= { ℎ−1𝐵 ⇒ ℎ𝐶 = curry 􏿵ℎ𝐶 ∘ evJ𝐵K𝕄,J𝐶K𝕄
∘ idJ𝐵K𝕄⇒J𝐶K𝕄

× ℎ−1𝐵 􏿸, universal property of exponential }

curry 􏿶uncurry 􏿴ℎ−1𝐵 ⇒ ℎ𝐶􏿷 ∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
𝕄
􏿸 × idJ𝐵Kℕ􏿹

= { uncurry }

curry 􏿶evJ𝐵Kℕ,J𝐶Kℕ
∘ ℎ−1𝐵 ⇒ ℎ𝐶 × idJ𝐵Kℕ

∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
𝕄
􏿸 × idJ𝐵Kℕ􏿹

= { − × J𝐵Kℕ functorial }

curry

⎛
⎜⎜⎜⎝evJ𝐵Kℕ,J𝐶Kℕ

∘ 􏿶ℎ−1𝐵 ⇒ ℎ𝐶 ∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
𝕄
􏿸􏿹 × idJ𝐵Kℕ

⎞
⎟⎟⎟⎠

= { uncurry }

curry

⎛
⎜⎜⎜⎝uncurry 􏿶ℎ−1𝐵 ⇒ ℎ𝐶 ∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K

𝕄
􏿸􏿹
⎞
⎟⎟⎟⎠

= { universal property of exponential }

ℎ−1𝐵 ⇒ ℎ𝐶 ∘ curry 􏿵JΓ + [𝑥∶𝐵] ⊢ 𝑢 ∶ 𝐶K
𝕄
􏿸

= { (MIso-Components), abs rule }
ℎ𝐵→𝐶 ∘ JΓ ⊢ 𝜆𝑥∶𝐵.𝑢 ∶ 𝐵 → 𝐶K

𝕄.

◁
app case Then 𝑡 = 𝑢𝑣 for some Γ ⊢ 𝑢 ∶ 𝐵 → 𝐴 and Γ ⊢ 𝑣 ∶ 𝐵, so

JΓ ⊢ 𝑢𝑣 ∶ 𝐴K
ℕ ∘ ℎΓ

= { app rule }
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evJ𝐵Kℕ,J𝐴Kℕ
∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

ℕ, JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩ ∘ ℎΓ
= { composition distributes over product }

evJ𝐵Kℕ,J𝐴Kℕ
∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

ℕ ∘ ℎΓ, JΓ ⊢ 𝑣 ∶ 𝐵Kℕ ∘ ℎΓ⟩

= { inductive hypothesis }
evJ𝐵Kℕ,J𝐴Kℕ

∘ ⟨ℎ𝐵→𝐴 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K
𝕄, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { (MIso-Components) }

evJ𝐵Kℕ,J𝐴Kℕ
∘ ⟨ℎ−1𝐵 ⇒ ℎ𝐴 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

𝕄, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { ℎ−1𝐵 ⇒ ℎ𝐴 = curry 􏿵ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄
∘ idJ𝐵K𝕄⇒J𝐴K𝕄

× ℎ−1𝐵 􏿸 }

evJ𝐵Kℕ,J𝐴Kℕ
∘ ⟨curry 􏿵ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄

∘ idJ𝐵K𝕄⇒J𝐴K𝕄
× ℎ−1𝐵 􏿸 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

𝕄, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { naturality of exponential }

evJ𝐵Kℕ,J𝐴Kℕ
∘ ⟨curry 􏿵ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄

∘ idJ𝐵K𝕄⇒J𝐴K𝕄
× ℎ−1𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

𝕄 × idJ𝐵Kℕ
􏿸 , ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { composition distributes over product }

evJ𝐵Kℕ,J𝐴Kℕ
∘ curry 􏿵ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄

∘ idJ𝐵K𝕄⇒J𝐴K𝕄
× ℎ−1𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

𝕄 × idJ𝐵Kℕ
􏿸 × idJ𝐵Kℕ

∘⟨idJΓK𝕄
, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { uncurry }

uncurry 􏿶curry 􏿵ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄
∘ idJ𝐵K𝕄⇒J𝐴K𝕄

× ℎ−1𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K
𝕄 × idJ𝐵Kℕ

􏿸􏿹

∘⟨idJΓK𝕄
, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { universal property of exponential }

ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄
∘ idJ𝐵K𝕄⇒J𝐴K𝕄

× ℎ−1𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K
𝕄 × idJ𝐵Kℕ

∘ ⟨idJΓK𝕄
, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { − × − bifunctorial }

ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄
∘ JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

𝕄 × ℎ−1𝐵 ∘ ⟨idJΓK𝕄
, ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { composition distributes over product }

ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄
∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K

𝕄 ∘ idJΓK𝕄
, ℎ−1𝐵 ∘ ℎ𝐵 ∘ JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { identity cancels through composition, inverses cancel }
ℎ𝐴 ∘ evJ𝐵K𝕄,J𝐴K𝕄

∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐵 → 𝐴K
𝕄, JΓ ⊢ 𝑣 ∶ 𝐵Kℕ⟩

= { app rule }
ℎ𝐴 ∘ JΓ ⊢ 𝑢𝑣 ∶ 𝐴K

𝕄.

◁
pair case Then 𝑡 = ⟨𝑢, 𝑣⟩ and 𝐴 = 𝐵 × 𝐶 for some Γ ⊢ 𝑢 ∶ 𝐵 and Γ ⊢ 𝑣 ∶ 𝐶, and

JΓ ⊢ ⟨𝑢, 𝑣⟩ ∶ 𝐵 × 𝐶K
ℕ ∘ ℎΓ

= { pair rule }
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⟨JΓ ⊢ 𝑢 ∶ 𝐵Kℕ, JΓ ⊢ 𝑣 ∶ 𝐶K
ℕ⟩ ∘ ℎΓ

= { composition distributes over product }
⟨JΓ ⊢ 𝑢 ∶ 𝐵Kℕ ∘ ℎΓ, JΓ ⊢ 𝑣 ∶ 𝐶K

ℕ ∘ ℎΓ⟩

= { inductive hypothesis }
⟨ℎ𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐵K𝕄, ℎ𝐶 ∘ JΓ ⊢ 𝑣 ∶ 𝐶K

𝕄⟩

= { composition distributes over product }
ℎ𝐵 × ℎ𝐶 ∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐵K𝕄, JΓ ⊢ 𝑣 ∶ 𝐶K

𝕄⟩

= { (MIso-Components) }
ℎ𝐵×𝐶 ∘ ⟨JΓ ⊢ 𝑢 ∶ 𝐵K𝕄, JΓ ⊢ 𝑣 ∶ 𝐶K

𝕄⟩

= { pair rule }
ℎ𝐵×𝐶 ∘ J⟨𝑢, 𝑣⟩ ∶ 𝐵 × 𝐶K

𝕄.

◁
fst, snd case Then 𝑡 = fst (𝑢) for some 𝐵 such that Γ ⊢ 𝑢 ∶ 𝐴 × 𝐵, and

JΓ ⊢ fst (𝑢) ∶ 𝐴K
ℕ ∘ ℎΓ

= { fst rule }
𝜋1 ∘ JΓ ⊢ 𝑢 ∶ 𝐴 × 𝐵Kℕ ∘ ℎΓ

= { inductive hypothesis }
𝜋1 ∘ ℎ𝐴×𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐴 × 𝐵K𝕄

= { (MIso-Components) }
𝜋1 ∘ ℎ𝐴 × ℎ𝐵 ∘ JΓ ⊢ 𝑢 ∶ 𝐴 × 𝐵K𝕄

= { action of − × − bifunctor on morphisms }
𝜋1 ∘ ⟨ℎ𝐴 ∘ 𝜋1, ℎ𝐵 ∘ 𝜋2⟩ ∘ JΓ ⊢ 𝑢 ∶ 𝐴 × 𝐵K𝕄

= { universal property of product }
ℎ𝐴 ∘ 𝜋1 ∘ JΓ ⊢ 𝑢 ∶ 𝐴 × 𝐵K𝕄

= { fst rule }
ℎ𝐴 ∘ JΓ ⊢ fst (𝑢) ∶ 𝐴K

𝕄.

◁
This establishes that Ap−1𝔾 (ℎ) is a natural transformation; given that ℎ is a model isomorphism, each

component of Ap−1𝔾 (ℎ) is an isomorphism, and so it is a natural isomorphism.
�

Proposition 4.32. Every Cartesian closed category is equivalent to the syntactic category of its internal
language:

Syn 􏿴Lan (𝒞)􏿷 ≅ 𝒞 .

Proof. Let 𝕄 be the canonical model of Lan (𝒞) in 𝒞. Define a functor 𝐹∶ Syn 􏿴Lan (𝒞)􏿷 → 𝒞,
which is given on objects by 𝐹(𝐴) ≔ J𝐴K = 𝐴, and on morphisms by

𝐹([⌜𝑡⌝𝐴]
T
) ≔ uncurry 􏿵… uncurry 􏿴J⊢ 𝑡 ∶ 𝐴K􏿷􏿸 (the maximal uncurrying).
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The action of 𝐹 is to effectively ‘undo’ all of the abstractions to yield a morphism with the domain
equal to the interpretation of the product of the inputs to said abstractions.

Now define 𝐺∶ 𝒞 → Syn 􏿴Lan (𝒞)􏿷, mapping 𝑋 ↦ 𝑋 for all objects 𝑋 of 𝒞, and

(𝑓 ∶ 𝑋1 ×⋯ × 𝑋𝑛 → 𝑌) ↦ [⌜𝜆𝑥1∶𝑋1. … .𝜆𝑥𝑛∶𝑋𝑛.𝑓(𝑥1, … , 𝑥𝑛)⌝
𝑋1→⋯→𝑋𝑛→𝑌]

T

for morphisms.
We will show that 𝐹 and 𝐺 when composed are naturally isomorphic to identity functors, i.e. finding

natural isomorphisms

𝜖 ∶ 𝐹 ∘ 𝐺
∼
=⇒ id𝒞 and 𝜂 ∶ 𝐺 ∘ 𝐹

∼
=⇒ idSyn􏿴Lan(𝒞)􏿷,

which serve witness to the equivalence.
For 𝜖, on its components given a morphism 𝑓∶ 𝑋1 ×⋯ × 𝑋𝑛 → 𝑌, we need to satisfy

(𝐹 ∘ 𝐺)(𝑋1 ×⋯ × 𝑋𝑛) (𝐹 ∘ 𝐺)(𝑌)

𝑋1 ×⋯ × 𝑋𝑛 𝑌

(𝐹∘𝐺)(𝑓)

∼
𝜖𝑋1×⋯×𝑋𝑛

∼
𝜖𝑌

𝑓

Observe that (𝐹 ∘ 𝐺)(𝑋) = 𝐹(𝑋) = J𝑋K = 𝑋 for any object 𝑋 of 𝒞, and

(𝐹 ∘ 𝐺)(𝑓 ∶ 𝑋1 ×⋯ × 𝑋𝑛 → 𝑌)
= { action of 𝐺 on morphisms }

𝐹([⌜𝜆𝑥1∶𝑋1. … .𝜆𝑥𝑛∶𝑋𝑛.𝑓(𝑥1, … , 𝑥𝑛)⌝
𝑋1→⋯→𝑋𝑛→𝑌]

T
)

= { action of 𝐹 on morphisms }

uncurry 􏿵… uncurry 􏿴
q
⊢ 𝜆𝑥1∶𝑋1. … .𝜆𝑥𝑛∶𝑋𝑛.𝑓(𝑥1, … , 𝑥𝑛 ∶ 𝑋1 →⋯→ 𝑋𝑛 → 𝑌)

y
􏿷􏿸

= { abs rule applied until codomain is 𝑌 }

uncurry

⎛
⎜⎜⎜⎝… uncurry 􏿶curry 􏿵… curry 􏿴

q
[𝑥1∶𝑋1, … , 𝑥𝑛∶𝑋𝑛] ⊢ 𝑓(𝑥1, … , 𝑥𝑛 ∶ 𝑌)

y
􏿷􏿸􏿹
⎞
⎟⎟⎟⎠

= { universal property of exponential }
q
[𝑥1∶𝑋1, … , 𝑥𝑛∶𝑋𝑛] ⊢ 𝑓(𝑥1, … , 𝑥𝑛 ∶ 𝑌)

y

= { func rule }
q
𝑓
y
∘ ⟨J[𝑥1∶𝑋1, … , 𝑥𝑛∶𝑋𝑛] ⊢ 𝑥1 ∶ 𝑋1K, … , J[𝑥1∶𝑋1, … , 𝑥𝑛∶𝑋𝑛] ⊢ 𝑥𝑛 ∶ 𝑋𝑛K⟩

= { var rule }
q
𝑓
y
∘ ⟨𝜋1, … , 𝜋𝑛⟩

= { canonicity of model, universal property of product }
𝑓.

So if we use identity morphisms for components, then the whole diagram degenerates and the
condition is trivially satisfied.

For the reverse direction, 𝜂, on its components given an equivalence class of closed terms [⌜𝑡⌝𝐴→𝐵]
T
,

we require
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(𝐺 ∘ 𝐹)(𝐴) (𝐺 ∘ 𝐹)(𝐵)

𝐴 𝐵

(𝐺∘𝐹)([⌜𝑡⌝𝐴→𝐵]
T
)

∼
𝜂𝐴

∼
𝜂𝐵

[⌜𝑡⌝𝐴→𝐵]
T

(𝐺 ∘ 𝐹)(𝐴) = 𝐺(J𝐴K) = J𝐴K and similarly for 𝐵. By 𝜂-equivalence, we have ⊢ 𝑡 = 𝜆𝑥∶𝐴.𝑡𝑥 ∶ 𝐴 → 𝐵,
so by the Soundness Theorem we have J⊢ 𝑡 ∶ 𝐴 → 𝐵K = J⊢ 𝜆𝑥∶𝐴.𝑡𝑥 ∶ 𝐴 → 𝐵K; using the abs rule, we
discern that uncurry 􏿴J⊢ 𝑡 ∶ 𝐴 → 𝐵K􏿷 = J[𝑥∶𝐴] ⊢ 𝑡𝑥 ∶ 𝐵K, hence letting 𝑠 = J[𝑥∶𝐴] ⊢ 𝑡𝑥 ∶ 𝐵K ∶ J𝐴K →
J𝐵K,

(𝐺 ∘ 𝐹)([⌜𝑡⌝𝐴→𝐵]
T
) = 𝐺(𝑠) = [⌜𝜆𝑥∶J𝐴K.𝑠(𝑥)⌝J𝐴K→J𝐵K]

T
.

We want find 𝜂 subject to the commutativity of the diagram, which is that

𝜂J𝐵K ∘ [⌜𝜆𝑥∶J𝐴K.𝑠(𝑥)⌝J𝐴K→J𝐵K]
T
= [⌜𝑡⌝𝐴→𝐵]

T
∘ 𝜂J𝐴K.

Define 𝜂J𝑋K ≔ [⌜unmodel𝑋⌝
J𝑋K→𝑋]

T
; then this equation is equivalent to

[⌜𝜆𝑥∶J𝐴K.unmodel𝐵(𝑠(𝑥))⌝
J𝐴K→𝐵]

T
= [⌜𝜆𝑥∶J𝐴K.𝑡(unmodel𝐴(𝑥))⌝

J𝐴K→𝐵]
T
.

We can prove this by observing that in the canonical model,

q
⊢ 𝜆𝑥∶J𝐴K.unmodel𝐵(𝑠(𝑥)) ∶ J𝐴K → 𝐵

y

= { abs rule }

curry 􏿴
q
[𝑥∶J𝐴K] ⊢ unmodel𝐵(𝑠(𝑥)) ∶ 𝐵

y
􏿷

= { func rule }

curry 􏿴
q
unmodel𝐵

y
∘
q
[𝑥∶J𝐴K] ⊢ 𝑠(𝑥) ∶ J𝐵K

y
􏿷

= { canonicity of model }

curry 􏿴id𝐵 ∘
q
[𝑥∶J𝐴K] ⊢ 𝑠(𝑥) ∶ J𝐵K

y
􏿷

= { identities cancel through composition }

curry 􏿴
q
[𝑥∶J𝐴K] ⊢ 𝑠(𝑥) ∶ J𝐵K

y
􏿷

= { func rule }

curry 􏿴J𝑠K ∘
q
[𝑥∶J𝐴K] ⊢ 𝑥 ∶ J𝐴K

y
􏿷

= { var rule, universal property of product }

curry 􏿴J𝑠K ∘ idJ𝐴K􏿷

= { identities cancel through composition }

curry 􏿴J𝑠K􏿷

= { canonicity of model }
curry (𝑠)

= { 𝑠 = J[𝑥∶𝐴] ⊢ 𝑡(𝑥) ∶ 𝐵K }
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curry 􏿴J[𝑥∶𝐴] ⊢ 𝑡(𝑥) ∶ 𝐵K􏿷

= { func rule }

curry 􏿴J𝑡K ∘ J[𝑥∶𝐴] ⊢ 𝑥 ∶ 𝐴K􏿷

= { identities cancel through composition }

curry 􏿴J𝑡K ∘ id𝐴 ∘ J[𝑥∶𝐴] ⊢ 𝑥 ∶ 𝐴K􏿷

= { canonicity of model }

curry 􏿴J𝑡K ∘
q
unmodel𝐴

y
∘
q
[𝑥∶J𝐴K] ⊢ 𝑥 ∶ J𝐴K

y
􏿷

= { func rule }

curry 􏿴J𝑡K ∘
q
[𝑥∶J𝐴K] ⊢ unmodel𝐴(𝑥) ∶ 𝐴

y
􏿷

= { func rule }

curry 􏿴
q
[𝑥∶J𝐴K] ⊢ 𝑡(unmodel𝐴(𝑥)) ∶ 𝐵

y
􏿷

= { abs rule }
q
⊢ 𝜆𝑥∶J𝐴K.𝑡(unmodel𝐴(𝑥)) ∶ 𝐵

y
,

and this certainly implies that each component of 𝜂 is an isomorphism.
�
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free variable, 6
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Programming Computable Functions (PCF), 3
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axiomatic, 1
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soundness, 4, 20, 21
Soundness Theorem, 21

substitution, 7, 9, 13
semantics of, 17, 20

syntactic category, 26, 37, 39, 40, 60

terms
equality between, 8, 12
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Turing computable, 3
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dependent, 40
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typability, 10
typing context, 8, 10
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